Background: Parenteral nutrition (PN) is associated with risks that could threaten the clinical condition of premature neonates hospitalized in the neonatal intensive care unit. In this work, risk-analysis methodology was implemented to contain the risks associated with the PN production process and improve PN safety.
Methods: The Failure Modes, Effects, and Criticality Analysis was performed by a multidisciplinary team.
Objective: This study was designed to reevaluate and improve the quality and safety of the chemotherapy preparation in a Central Chemotherapy Preparation Unit of a Public Hospital.
Methods: A failure modes, effects, and criticality analysis (FMECA) was conducted by a multidisciplinary team. All potential failure modes at each stage of the chemotherapy preparation were recorded, and the associated risks were scored for their severity, occurrence, and detectability with a risk priority number (RPN).
Biodistribution of nanoparticles is dependent on their physicochemical properties (such as size, surface charge, and surface hydrophilicity). Clear and systematic understanding of nanoparticle properties' effects on their in vivo performance is of fundamental significance in nanoparticle design, development and optimization for medical applications, and toxicity evaluation. In the present study, a physiologically based pharmacokinetic model was utilized to interpret the effects of nanoparticle properties on previously published biodistribution data.
View Article and Find Full Text PDFPurpose: To develop scleral controlled-release-systems of triamcinolone acetonide (TA) based on biodegradable poly(lactide) (PLA).
Materials And Methods: (1) PLA microspheres containing TA were prepared by a single or double emulsification-solvent evaporation method. Morphology, size, effect of drug input and method of microsphere preparation on drug loading, and in vitro TA release of the microspheres were investigated.
We investigated the influence of antigen entrapment in PLA nanoparticles on the immune responses obtained after transcutaneous immunization. OVA-loaded PLA nanoparticles were prepared using a double emulsion process. Following application onto bare skin of mice in vivo, fluorescence-labeled nanoparticles were detected in the duct of the hair follicles indicating that the nanoparticles can penetrate the skin barrier through the hair follicles.
View Article and Find Full Text PDF