Silver-containing nanoparticles (AgCNPs) have attracted increasing concerns because of their potential adverse effects on aquatic ecosystems. However, minimal information is available regarding their concentration, distribution, and speciation in the actual environment. In this work, different species of AgCNPs, including silver nanoparticles (AgNPs), silver chloride (AgCl NPs) and silver sulfide (AgS NPs) in water and sediment samples from Taihu Lake were analyzed by a multistep selective dissolution method combined with single-particle inductively coupled plasma mass spectrometry.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Background: Mitochondrial E3 ubiquitin ligase (MARCH5) as an important regulator in maintaining mitochondrial function. Our aims were to investigate the role and mechanism of MARCH5 in aortic valve calcification.
Methods: Human aortic valves, both calcified and non-calcified, were analyzed for MARCH5 expression using western blot.
Contextuality is a hallmark feature of the quantum theory that captures its incompatibility with any noncontextual hidden-variable model. The Greenberger-Horne-Zeilinger (GHZ)-type paradoxes are proofs of contextuality that reveal this incompatibility with deterministic logical arguments. However, the GHZ-type paradox whose events can be included in the fewest contexts and that brings the strongest nonclassicality remains elusive.
View Article and Find Full Text PDFRound-trip energy transfer (RTET) in the popular Er/Yb upconversion (UC) system is a newly discovered mechanism for the red emission of Er through Yb as an intermediate ion. However, the importance of the RTET still remains a question. Here, we show in cubic YO that the new mechanism defeats conventional ones and dominates the red emission in both UC and down-shifting (DS) luminescence for a wide concentration range of Yb.
View Article and Find Full Text PDFImplantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating.
View Article and Find Full Text PDF