Background: High-quality neonatal care requires sufficient functional medical devices, furniture, fixtures, and use by trained healthcare workers, however there is lack of publicly available tools for quantification and costing. This paper describes development and use of a planning and costing tool regarding furniture, fixtures and devices to support scale-up of WHO level-2 neonatal care, for national and global newborn survival targets.
Methods: We followed a systematic process.
Background: Medical devices are critical to providing high-quality, hospital-based newborn care, yet many of these devices are unavailable in low- and middle-income countries (LMIC) and are not designed to be suitable for these settings. Target Product Profiles (TPPs) are often utilised at an early stage in the medical device development process to enable user-defined performance characteristics for a given setting. TPPs can also be applied to assess the profile and match of existing devices for a given context.
View Article and Find Full Text PDFBackground: Millions of newborns die annually from preventable causes, with the highest rates occurring in Africa. Reducing neonatal mortality requires investment to scale hospital care, which includes providing hospitals with appropriate technology to care for small and sick newborns. Expensive medical devices designed for high-resource settings often fail to withstand conditions in low-resource hospitals, including humidity, dust, frequent user turnover, complex maintenance, lack of stable power, or difficulty sourcing expensive consumables.
View Article and Find Full Text PDFRespiratory distress due to preterm birth is a significant cause of death in low-resource settings. The introduction of continuous positive airway pressure (CPAP) systems to treat respiratory distress significantly reduced mortality in high-resource settings, but CPAP was only recently introduced in low-resource settings due to cost and infrastructure limitations. We evaluated pressure stability and imposed work of breathing (iWOB) of five CPAP systems used in low resource settings: the Fisher and Paykel bubble CPAP, the Diamedica baby CPAP, the Medijet nCPAP generator, and the first (2015) and second (2017) generation commercially available Pumani CPAPs.
View Article and Find Full Text PDFObjective: Evaluate a novel continuous temperature monitor in a low-resource neonatal ward.
Design: We developed a low-cost continuous neonatal temperature monitor (NTM) for use in low-resource settings. Accuracy of NTM was initially assessed in the laboratory.