We present measurements of laser-induced shockwave pressure rise time in liquids on a sub-nanosecond scale, using custom-designed single-mode fiber optic hydrophone. The measurements are aimed at the study of the shockwave generation process, helping to improve the effectiveness of various applications and decrease possible accidental damage from shockwaves. The developed method allows measurement of the fast shockwave rise time as close as 10 µm from an 8 µm sized laser-induced plasma shockwave source, significantly improving the spatial and temporal resolution of the pressure measurement over other types of hydrophones.
View Article and Find Full Text PDFShock wave visual detection was traditionally performed using streak cameras, limited to homogeneous shock wave emission, with the corresponding shock wave pressure measurements available at rather large distances or numerically estimated through equation of state for water. We demonstrate a multi-frame multi-exposure shock wave velocity measurement technique for all in-plane directions of propagation, based on custom-built illumination system allowing multiple illumination pulses within each frame at multi-MHz frame rates and at up to 200 MHz illumination pulse repetition frequency at sub-nanosecond pulse durations. The measurements are combined and verified using a fiber-optic probe hydrophone, providing independent shock wave pressure and time-of-flight measurements, creating a novel all-optical measurement setup.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2022
In a growing number of applications, fast and localized pressure measurement in aqueous media is desired. To perform such measurements, a custom-made single-mode fiber-optic probe hydrophone (FOPH) was designed and used to measure the pressure pulse generated by laser-induced breakdown (LIB) in water. The sensor enabled sub-nanosecond pressure rise time measurement.
View Article and Find Full Text PDFUnderstanding and controlling the interaction of cavitation bubbles and nearby material is becoming essential optimization of various processes. We examined the interaction of a single bubble with a membrane with different fluids on each side of it. Significant differences in bubble behavior depending on the fluid properties were observed, while the influence of membrane properties was less pronounced.
View Article and Find Full Text PDFFor advanced optical analysis and optimization of solar cell structures with multi-scale interface textures, we applied a coupled modelling approach (CMA), where we couple the rigorous coupled wave analysis method with ray tracing and transfer matrix method. Coupling of the methods enables accurate optical analysis of solar cells made of thin coherent and thick incoherent layers and includes combinations of nano- and micro-scale textures at various positions in the structure. The approach is experimentally validated on standalone single- and both-side textured crystalline silicon wafers, as well as on complete silicon heterojunction (Si HJ) solar cell structures.
View Article and Find Full Text PDF