Background: Biomedtrix BFX cementless total hip replacement (THR) requires the use of femoral broaches to prepare a press-fit envelope within the femur for subsequent stem insertion. Current broaches contain teeth that crush and remove cancellous bone; however, they are not particularly well-suited for broaching sclerotic (corticalized) cancellous bone. In this study, three tooth designs [Control, TG1 (additional V-grooves), TG2 (diamond tooth pattern)] were evaluated with a quasi-static testing protocol and polyurethane test blocks simulating normal and sclerotic bone.
View Article and Find Full Text PDFThe advancement of nanoenabled wafer-based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single-crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large-area periodic arrays of gold nanotriangles.
View Article and Find Full Text PDFThe subwavelength confinement of light energy in the nanogaps formed between adjacent plasmonic nanostructures provides the foundational basis for nanophotonic applications. Within this realm, air-filled nanogaps are of central importance because they present a cavity where application-specific nanoscale objects can reside. When forming such configurations on substrate surfaces, there is an inherent difficulty in that the most technologically relevant nanogap widths require closely spaced nanostructures separated by distances that are inaccessible through standard electron-beam lithography techniques.
View Article and Find Full Text PDFPush-out tests are frequently used to evaluate the bone-implant interfacial strength of orthopedic implants, particularly dental and craniomaxillofacial applications. There currently is no standard method for performing push-out tests on calvarial models, leading to a variety of inconsistent approaches. In this study, fixtures and methods were developed to perform push-out tests in accordance with the following design objectives: (i) the system rigidly fixes the explanted calvarial sample, (ii) it minimizes lateral bending, (iii) it positions the defect accurately, and (iv) it permits verification of the coaxial alignment of the defect with the push-out rod.
View Article and Find Full Text PDF