Aims: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity.
View Article and Find Full Text PDFOverweight and obesity have been linked with increased intake of sugar-sweetened beverages. On the other hand, physical activity has been known to lead to weight loss. Therefore, we hypothesized that exercise might influence the population in fecal microbiota as their changed abundance is often associated with shifts in the physical activity and diet.
View Article and Find Full Text PDFBackground: Caveolin-1 (cav-1) plays a role in pulmonary arterial hypertension (PAH). Monocrotaline (MCT)-induced PAH is characterized by a loss of cav-1 in pulmonary arteries; however, less is known regarding its role in the hypertrophied right ventricle (RV). We aimed to characterize the role of cav-1 and Hsp90 in the RV of MCT-induced PAH and their impact on endothelial nitric oxide synthase (eNOS).
View Article and Find Full Text PDFCirculating microRNA-21 (miR-21) has been utilized as a diagnostic tool in the assessment of heart failure (HF). Blood constitution may be altered when HF occurs and miR-21 may affect hematopoiesis. Sample hemolysis may influence the determination of circulating miRNAs, challenging the diagnostic use of miRNAs.
View Article and Find Full Text PDF