Non-Maxwellian evaporation of light atoms and molecules (particles) such as He and H2 from liquids has been observed experimentally. In this work, we use simulations to study systematically the evaporation of Lennard-Jones particles from liquid water. We find instances of sub- and super-Maxwellian evaporation, depending on the mass of the particle and the particle-water interaction strength.
View Article and Find Full Text PDFTerahertz (far infrared) spectroscopy provides a useful tool for probing both ionic motions in solution and the effect of ionic solutes on the dynamics of the solvent. In this study, we calculate terahertz spectra of aqueous alkali chloride solutions using classical but novel (the water model includes three-body interactions, the ion parameterization is non-standard, and the dipole surface is polarizable) molecular dynamics simulations. The calculated spectra compare reasonably well to experimental spectra.
View Article and Find Full Text PDFWe present an overview of recent static and time-resolved vibrational spectroscopic studies of liquid water from ambient conditions to the supercooled state, as well as of crystalline and amorphous ice forms. The structure and dynamics of the complex hydrogen-bond network formed by water molecules in the bulk and interphases are discussed, as well as the dissipation mechanism of vibrational energy throughout this network. A broad range of water investigations are addressed, from conventional infrared and Raman spectroscopy to femtosecond pump-probe, photon-echo, optical Kerr effect, sum-frequency generation, and two-dimensional infrared spectroscopic studies.
View Article and Find Full Text PDFHelium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4-8.5 molal LiCl and LiBr at 232-252 K.
View Article and Find Full Text PDFNon-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g.
View Article and Find Full Text PDF