Background: The industrial feasibility of photosynthetic bioproduction using cyanobacterial platforms remains challenging due to insufficient yields, particularly due to competition between product formation and cellular carbon demands across different temporal phases of growth. This study investigates how circadian clock regulation impacts carbon partitioning between storage, growth, and product synthesis in Synechococcus elongatus PCC 7942, and provides insights that suggest potential strategies for enhanced bioproduction.
Results: After entrainment to light-dark cycles, PCC 7942 cultures transitioned to constant light revealed distinct temporal patterns in sucrose production, exhibiting three-fold higher productivity during subjective night compared to subjective day despite moderate down-regulation of genes from the photosynthetic apparatus.
The distribution of allelic effects on traits, along with their gene-by-gene and gene-by-environment interactions, contributes to the phenotypes available for selection and the trajectories of adaptive variants. Nonetheless, uncertainty persists regarding the effect sizes underlying adaptations and the importance of genetic interactions. Herein, we aimed to investigate the genetic architecture and the epistatic and environmental interactions involving loci that contribute to multiple adaptive traits using two new panels of Drosophila melanogaster recombinant inbred lines (RILs).
View Article and Find Full Text PDFAcute stress has enduring effects on the brain and motivated behavior across species. For example, acute stress produces persisting decreases in voluntary physical activity as well as molecular changes in the striatum, a brain region that regulates voluntary physical activity and other motivated behaviors. Microglia, the primary immune cells of the central nervous system, are positioned at the interface between neural responses to stress and neural coordination of voluntary activity in that they respond to stress, sense molecular changes in the striatum, and modulate neuronal activity.
View Article and Find Full Text PDFVector control remains an important strategy worldwide to prevent human infection with pathogens transmitted by arthropods. Vector control strategies rely on accurate identification of vector taxa along with vector-specific biological indicators such as feeding ecology, infection prevalence and insecticide resistance. Multiple 'DNA barcoding' protocols have been published over the past several decades to support these applications, generally relying on informal manual approaches such as BLAST to assign taxonomic identity to the resulting sequences.
View Article and Find Full Text PDFAlthough the mitochondrial genome is an attribute of all eukaryotes, some yeast species (called petite-positive) can replicate without mitochondrial DNA (mtDNA). Strains without mtDNA (known as rho mutants or petite mutants) are respiration-deficient and require fermentable carbon sources (such as glucose) for their metabolism. However, they are compromised in many aspects of fitness and competitiveness.
View Article and Find Full Text PDF