Publications by authors named "Z J Mudryk"

The study was carried out on four non-tidal sandy marine beaches located on the Polish part of the southern Baltic Sea coast. We applied a LIVE/DEAD™ BacLight™ Bacterial Viability Kit (Invitrogen™) method to determine the abundance of live and dead bacteriopsammon. Live psammon bacteria cells constituted 31-53% of the total number of bacteria inhabiting sand of the studied beaches.

View Article and Find Full Text PDF

The aim of this paper was to determine the abundance and secondary production by bacteria inhabiting the surface microlayer and subsurface water in a specific water basin, i.e., polluted estuarine harbour channel.

View Article and Find Full Text PDF

Abundance and antibiotic resistance of bacteria of the genus Aeromonas isolated from the water of three carp ponds were studied. The number of those bacteria differed between the studied ponds, sites and season. The results of the present study showed that planktonic Aeromonas inhabiting those ponds strongly differed in the resistance level to tested antibiotics.

View Article and Find Full Text PDF

The level of activity of extracellular enzymes was determined on two transects characterised by different anthropic pressure on a sandy beach in Ustka, the southern coast of the Baltic Sea. Generally, the level of activity of the studied enzymes was higher on the transect characterised by high anthropic pressure. The ranking order of the mean enzyme activity rates in the sand was as follows: lipase > phosphatase > aminopeptidase > β-glucosidase > α-glucosidase > chitinase.

View Article and Find Full Text PDF

Number of heterotrophic bacteria ability to decompose organic phosphorus compounds and the level of phosphatase activity in the sand of two marine beaches (southern coast of the Baltic Sea) differing in the level of anthropopressure were studied. The study showed that the number of bacteria and level phosphatase activity were higher in the sand of the beach subjected to stronger anthropopressure. In both studied beaches bacteria hydrolysing DNA were the most numerous (92.

View Article and Find Full Text PDF