Publications by authors named "Z Ikonic"

Over the last 30 years, group-IV semiconductors have been intensely investigated in the quest for a fundamental direct bandgap semiconductor that could yield the last missing piece of the Si Photonics toolbox: a continuous-wave Si-based laser. Along this path, it has been demonstrated that the electronic band structure of the GeSn/SiGeSn heterostructures can be tuned into a direct bandgap quantum structure providing optical gain for lasing. In this paper, we present a versatile electrically pumped, continuous-wave laser emitting at a near-infrared wavelength of 2.

View Article and Find Full Text PDF

CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely GeSn alloys, are investigated. Layers featuring Sn contents up to 14 at.

View Article and Find Full Text PDF

Mechanical forces induced by high-speed oscillations provide an elegant way to dynamically alter the fundamental properties of materials such as refractive index, absorption coefficient and gain dynamics. Although the precise control of mechanical oscillation has been well developed in the past decades, the notion of dynamic mechanical forces has not been harnessed for developing tunable lasers. Here we demonstrate actively tunable mid-infrared laser action in group-IV nanomechanical oscillators with a compact form factor.

View Article and Find Full Text PDF

In this work, we investigate the effects of n and p-type background doping, interface composition diffusion (interdiffusion) of the barrier material and layer thickness variation during molecular beam epitaxy (MBE) growth on transport characteristics of terahertz-frequency quantum cascade lasers (THz QCLs). We analysed four exemplary structures: a bound-to-continuum design, hybrid design, LO-phonon design and a two-well high-temperature performance LO-phonon design. The exemplary bound-to-continuum design has shown to be the most sensitive to the background doping as it stops lasing for concentrations around - cm .

View Article and Find Full Text PDF

Nanowires are promising platforms for realizing ultra-compact light sources for photonic integrated circuits. In contrast to impressive progress on light confinement and stimulated emission in III-V and II-VI semiconductor nanowires, there has been no experimental demonstration showing the potential to achieve strong cavity effects in a bottom-up grown single group-IV nanowire, which is a prerequisite for realizing silicon-compatible infrared nanolasers. Herein, we address this limitation and present an experimental observation of cavity-enhanced strong photoluminescence from a single Ge/GeSn core/shell nanowire.

View Article and Find Full Text PDF