Many applications of nanocrystals rely on their use in light detection and emission. In recent years, nanocrystals with more relaxed carrier confinement, including so-called 'bulk' and 2D implementations, have made their stake. In such systems, the charge carriers generated after (photo-)excitation are spread over a semi-continuous density of states, behaviour controlled by the carrier temperature .
View Article and Find Full Text PDFRecent advances in synthesis techniques yield InP-based QDs with optical properties comparable to those of benchmark Cd-based QDs, making InP-based QDs viable alternatives to toxic Cd-based QDs for applications such as quantum dot LEDs (QLEDs). However, QLEDs typically suffer from a loss of luminescence over time due to exposure of the QDs to ambient air. To avoid this, state-of-the-art hybrid barrier layers are explored consisting of alternating organic/inorganic layers.
View Article and Find Full Text PDFNanocrystals with a size in the regime of vanishing quantum confinement, or bulk nanocrystals (BNCs), have emerged recently as viable solution processable optical gain materials in the green part of the spectrum. Here, we show that these properties can be extended to the crucial red region using CdSe BNCs. Through quantitative time-resolved spectroscopy, we can model these nanocrystals as bulk semiconductors, thereby revealing that the gain originates from an unbound electron-hole plasma state.
View Article and Find Full Text PDFSemiconductor lead halide perovskites are excellent candidates for realizing low threshold light amplification due to their tunable and highly efficient luminescence, ease of processing, and strong light-matter interactions. However, most studies on optical gain have addressed bulk films, nanowires, or nanocrystals that exhibit little or no size quantization. Here, we show by means of a multitude of optical spectroscopy methods that small CsPbBr nanocrystals (NCs) exhibit a progressive red shift of the band-edge transition upon addition of electron-hole pairs, at least one carrier of which occupies a 2-fold degenerate, delocalized state in agreement with strong confinement.
View Article and Find Full Text PDFIndium phosphide (InP) quantum dots (QDs) are considered the most promising alternative for Cd and Pb-based QDs for lighting and display applications. However, while core-only QDs of CdSe and CdTe have been prepared with near-unity photoluminescence quantum yield (PLQY), this is not yet achieved for InP QDs. Treatments with HF have been used to boost the PLQY of InP core-only QDs up to 85%.
View Article and Find Full Text PDF