Publications by authors named "Z Ghani"

The fusion-born alpha particle heating in magnetically confined fusion machines is a high priority subject for studies. The self-heating of thermonuclear fusion plasma by alpha particles was observed in recent deuterium-tritium (D-T) experiments on the joint European torus. This observation was possible by conducting so-called "afterglow" experiments where transient high fusion yield was achieved with neutral beam injection as the only external heating source, and then termination of the heating at peak performance.

View Article and Find Full Text PDF

Insulin resistance (IR) is a common pathophysiological condition associated with many metabolic diseases, including obesity, prediabetes, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The widely used homeostasis model assessment for IR (HOMA-IR) is usually used to estimate IR. However, this model cannot be used for screening IR due to several logistic difficulties, such as costs and insulin instability, which are essential for measurement.

View Article and Find Full Text PDF

The JET neutron camera is a well-established detector system at JET, which has 19 sightlines each equipped with a liquid scintillator. The system measures a 2D profile of the neutron emission from the plasma. A first principle physics method is used to estimate the DD neutron yield that is based on JET neutron camera measurements and is independent of other neutron measurements.

View Article and Find Full Text PDF

Dedicated nuclear diagnostics have been designed, developed, and built within EUROFUSION enhancement programs in the last ten years for installation at the Joint European Torus and capable of operation in high power Deuterium-Tritium (DT) plasmas. The recent DT Experiment campaign, called DTE2, has been successfully carried out in the second half of 2021 and provides a unique opportunity to evaluate the performance of the new nuclear diagnostics and for an understanding of their behavior in the record high 14 MeV neutron yields (up to 4.7 × 10 n/s) and total number of neutrons (up to 2 × 10 n) achieved on a tokamak.

View Article and Find Full Text PDF