Publications by authors named "Z G Weinberg"

In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins. For instance, in the arms race between bacteria and bacteriophages, rapid expression of phage anti-CRISPR (acr) genes upon infection enables evasion from CRISPR-Cas defence; transcription is then repressed by an HTH-domain-containing anti-CRISPR-associated (Aca) protein, probably to reduce fitness costs from excessive expression. However, how a single HTH regulator adjusts anti-CRISPR production to cope with increasing phage genome copies and accumulating acr mRNA is unknown.

View Article and Find Full Text PDF

Alternative splicing (AS) is a complex process that generates transcript variants from a single pre-mRNA and is involved in numerous biological functions. Many RNA-binding proteins are known to regulate AS; however, little is known about the underlying mechanisms, especially outside the mammalian clade. Here, we show that polypyrimidine tract binding proteins (PTBs) from Arabidopsis thaliana regulate AS of cassette exons via pyrimidine (Py)-rich motifs close to the alternative splice sites.

View Article and Find Full Text PDF

To build a just, equitable, and diverse academy, scientists and institutions must address systemic barriers that sex and gender minorities face. This Commentary summarizes (1) critical context informing the contemporary oppression of transgender people, (2) how this shapes extant research on sex and gender, and (3) actions to build an inclusive and rigorous academy for all.

View Article and Find Full Text PDF
Article Synopsis
  • * Preprints, which are early versions of research papers, are becoming popular and might help change how peer review is done to be more helpful and friendly.
  • * The writers of this piece are asking everyone in the science community to get on board with sharing preprints and to support better peer reviews for them.
View Article and Find Full Text PDF

Synthetic and chimeric receptors capable of recognizing and responding to user-defined antigens have enabled "smart" therapeutics based on engineered cells. These cell engineering tools depend on antigen sensors which are most often derived from antibodies. Advances in the design of proteins have enabled the design of protein binders with the potential to target epitopes with unique properties and faster production timelines compared to antibodies.

View Article and Find Full Text PDF