Cytochrome is a small redox-active heme protein that has served as an important model system for understanding biological electron transfer processes. Here, we present a comprehensive theoretical study of electron transport mechanisms in protein-metal junctions incorporating cytochrome using a multi-scale computational approach. Employing molecular dynamics (MD) simulations, we generated junction geometries for both vacuum-dried and solvated conditions, with the protein covalently bound to gold contacts in various configurations.
View Article and Find Full Text PDFMultiheme cytochromes (MHCs) are the building blocks of highly conductive micrometre-long supramolecular wires found in so-called electrical bacteria. Recent studies have revealed that these proteins possess a long supramolecular array of closely packed cofactors along the main molecular axis alternating between perpendicular and stacking configurations (TST = T-shaped, stacked, T-shaped). While TST arrays have been identified as the likely electron conduit, the mechanisms of outstanding long-range charge transport observed in these structures remain unknown.
View Article and Find Full Text PDFElectrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms.
View Article and Find Full Text PDFAs the field of nanoelectronics based on biomolecules such as peptides and proteins rapidly grows, there is a need for robust computational methods able to reliably predict charge transfer properties at bio/metallic interfaces. Traditionally, hybrid quantum-mechanical/molecular-mechanical techniques are employed for systems where the electron hopping transfer mechanism is applicable to determine physical parameters controlling the thermodynamics and kinetics of charge transfer processes. However, these approaches are limited by a relatively high computational cost when extensive sampling of a configurational space is required, like in the case of soft biomatter.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2023
Multiheme cytochromes (MHCs) have attracted much interest for use in nanobioelectronic junctions due to their high electronic conductances. Recent measurements on dry MHC junctions suggested that a coherent tunneling mechanism is operative over surprisingly long long distances (>3 nm), which challenges our understanding of coherent transport phenomena. Here we show that this is due to (i) a low exponential distance decay constant for coherent conduction in MHCs (β = 0.
View Article and Find Full Text PDF