Publications by authors named "Z EYAL"

Organisms evolve mechanisms that regulate the properties of biogenic crystals to support a wide range of functions, from vision and camouflage to communication and thermal regulation. Yet, the mechanism underlying the formation of diverse intracellular crystals remains enigmatic. Here we unravel the biochemical control over crystal morphogenesis in zebrafish iridophores.

View Article and Find Full Text PDF

Biogenic crystals present a variety of complex morphologies that form with exquisite fidelity. In the case of the intricate morphologies of coccoliths, calcite crystals produced by marine algae, only a single set of crystallographic facets is utilized. It is unclear which growth process can merge this simple crystallographic habit with the species-specific architectures.

View Article and Find Full Text PDF

Controlling the morphology of crystalline materials is challenging, as crystals have a strong tendency toward thermodynamically stable structures. Yet, organisms form crystals with distinct morphologies, such as the plate-like guanine crystals produced by many terrestrial and aquatic species for light manipulation. Regulation of crystal morphogenesis was hypothesized to entail physical growth restriction by the surrounding membrane, combined with fine-tuned interactions between organic molecules and the growing crystal.

View Article and Find Full Text PDF

Metal sulfides are a common group of extracellular bacterial biominerals. However, only a few cases of intracellular biomineralization are reported in this group, mostly limited to greigite (Fe S ) in magnetotactic bacteria. Here, a previously unknown periplasmic biomineralization of copper sulfide produced by the magnetotactic bacterium Desulfamplus magnetovallimortis strain BW-1, a species known to mineralize greigite (Fe S ) and magnetite (Fe O ) in the cytoplasm is reported.

View Article and Find Full Text PDF

Biomineralization processes exert varying levels of control over crystallization, ranging from poorly ordered polycrystalline arrays to intricately shaped single crystals. Coccoliths, calcified scales formed by unicellular algae, are a model for a highly controlled crystallization process. The coccolith crystals nucleate next to an organic oval structure that was termed the base plate, leading to the assumption that it is responsible for the oriented nucleation of the crystals via stereochemical interactions.

View Article and Find Full Text PDF