Publications by authors named "Z Dominski"

A novel class of benzoxaboroles was reported to induce cancer cell death but the mechanism was unknown. Using a forward genetics platform, we discovered mutations in cleavage and polyadenylation specific factor 3 (CPSF3) that reduce benzoxaborole binding and confer resistance. CPSF3 is the endonuclease responsible for pre-mRNA 3'-end processing, which is also important for RNA polymerase II transcription termination.

View Article and Find Full Text PDF
Article Synopsis
  • U7 snRNP is a crucial endonuclease involved in processing histone pre-mRNAs in metazoans and has a unique composition compared to other spliceosomal snRNPs, lacking certain subunits and incorporating Lsm10 and Lsm11.
  • Recent research reveals that Lsm10 and Lsm11 interact with the methylosome complex, which includes PRMT5, involved in methylating proteins during assembly processes.
  • PRMT5 not only methylates specific arginine residues in Lsm11 but also modifies an arginine in SmE, suggesting that the unique methylation patterns of these proteins may be significant for the U7 snRNP assembly process.
View Article and Find Full Text PDF

U7 snRNP is a multi-subunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B and D3, are shared with the spliceosomal snRNPs.

View Article and Find Full Text PDF

In animal cells, replication-dependent histone mRNAs end with a highly conserved stem-loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3' end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3'-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3' end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem-loop, but this cleavage is not followed by polyadenylation.

View Article and Find Full Text PDF

In animal cells, replication-dependent histone pre-mRNAs are processed at the 3'-end by an endonucleolytic cleavage carried out by the U7 snRNP, a machinery that contains the U7 snRNA and many protein subunits. Studies on the composition of this machinery and understanding of its role in 3'-end processing were greatly facilitated by the development of an in vitro system utilizing nuclear extracts from mammalian cells 35 years ago and later from Drosophila cells. Most recently, recombinant expression and purification of the components of the machinery have enabled the full reconstitution of an active machinery and its complex with a model pre-mRNA substrate, using 13 proteins and 2 RNAs, and the determination of the structure of this active machinery.

View Article and Find Full Text PDF