Proc Natl Acad Sci U S A
December 2024
Numerous missions to the Moon have identified and documented volatile deposits associated with permanently shadowed regions. A series of science goals for the Artemis Program is to explore these volatile deposits and return samples to Earth. Volatiles in these reservoirs may consist of a variety of species whose stable isotope characteristics could elucidate both their sources and the processes instrumental in their formation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
As a first step in preparing for the return of samples from the Moon by the Artemis Program, NASA initiated the Apollo Next Generation Sample Analysis Program (ANGSA). ANGSA was designed to function as a low-cost sample return mission and involved the curation and analysis of samples previously returned by the Apollo 17 mission that remained unopened or stored under unique conditions for 50 years. These samples include the lower portion of a double drive tube previously sealed on the lunar surface, the upper portion of that drive tube that had remained unopened, and a variety of Apollo 17 samples that had remained stored at -27 °C for approximately 50 years.
View Article and Find Full Text PDFTriple oxygen isotopes of Cenozoic intrusive rocks emplaced along the Ross Sea coastline in Antarctica, reveal that meteoric-hydrothermal waters imprinted their stable isotope composition on mineral phases, leaving a clear record of oxygen and hydrogen isotope variations during the establishment of the polar cap. Calculated O- and H-isotope compositions of meteoric waters vary from -9 ± 2‰ and -92 ± 5‰ at 40 ± 0.6 Ma, to -30 and -234 ± 5‰ at 34 ± 1.
View Article and Find Full Text PDF