In this study, we present an analysis of the optical response of strong coupling between SPR and labeled proteins. We demonstrate a sensing methodology that allows to evaluate the protein mass adsorbed to the gold's surface from the Rabi gap, which is a direct consequence of the strong light-matter interaction between surface plasmon polariton and dye exciton of labeled protein. The total internal reflection ellipsometry optical configuration was used for simulation of the optical response for adsorption of HSA-Alexa633 dye-labeled protein to a thin gold layer onto the glass prism.
View Article and Find Full Text PDFIn this study, the sensitivity to the refractive index changes of the ambient was studied on the uniform gold film (~50 nm) with a 1D photonic crystal (PC) from periodic five TiO (~110 nm)/SiO (~200 nm) bilayers and gold nano-bumps array produced by direct laser writing on the same sample. The optical signal sensitivity of hybrid plasmonic resonances was compared with traditional surface plasmon resonance (SPR) on a single gold layer. The influence of the strong coupling regime between Tamm plasmon polariton (TPP) and propagated plasmon polaritons in the hybrid plasmonic modes on the sensitivity of the optical was discussed.
View Article and Find Full Text PDFBiosensors are described as analytical devices in which biological substances are detected by using various physicochemical detection systems [...
View Article and Find Full Text PDFA one-dimensional photonic crystal with an additional TiO layer, supporting Bloch surface waves (BSW), was used for enhanced signal sensitivity for the detection of protein interaction. To compare the optical response of BSW and photonic crystals (PC), bovine serum albumin and specific antibodies against bovine serum were used as a model system. The results obtained show the enhanced sensitivity of p- and s-BSW components for the 1D PC sample with an additional TiO layer.
View Article and Find Full Text PDF