Plant secondary compounds (PSCs) have profound influence on the ecological interaction between plants and their consumers. Glycosides, a class of PSC, are inert in their intact form and become toxic on activation by either plant β-glucosidase enzymes or endogenous β-glucosidases produced by the intestine of the plant-predator or its microbiota. Many insect herbivores decrease activities of endogenous β-glucosidases to limit toxin exposure.
View Article and Find Full Text PDFLand snails are exposed to conditions of high ambient temperature and low humidity, and their survival depends on a suite of morphological, behavioral, physiological, and molecular adaptations to the specific microhabitat. We tested in six populations of the land snail Theba pisana whether adaptations to different habitats affect their ability to cope with thermal stress and their strategies of heat shock protein (HSP) expression. Levels of Hsp70 and Hsp90 in the foot tissue were measured in field-collected snails and after acclimation to laboratory conditions.
View Article and Find Full Text PDFGlycosides are a major group of plant secondary compounds characterized by one or more sugars conjugated to a lipophilic, possibly toxic aglycone, which is released upon hydrolysis. We compared small intestinal homogenate hydrolysis activity of three rodent and two avian species against four substrates: amygdalin and sinigrin, two plant-derived glucosides, the sugar lactose, whose hydrolysis models some activity against flavonoid and isoflavonoid glucosides, and the disaccharide sugar maltose (from starch), used as a comparator. Three new findings extend our understanding of physiological processing of plant glucosides: (1) the capacity of passerine birds to hydrolyze plant glucosides seems relatively low, compared with rodents; (2) in this first test of vertebrates' enzymic capacity to hydrolyze glucosinolates, sinigrin hydrolytic capacity seems low; (3) in laboratory mice, hydrolytic activity against lactose resides on the enterocytes' apical membrane facing the intestinal lumen, but activity against amygdalin seems to reside inside enterocytes.
View Article and Find Full Text PDFLand snails frequently encounter desiccating conditions, and their survival depends on a suite of morphological, physiological, and molecular adaptations to the specific microhabitat. Strategies of survival can be determined by integrating information from various levels of biological organization. In this study, we used a combination of physiological parameters related to water economy and molecular factors (stress protein expression) to investigate the strategies of survival adopted by seven populations of the Mediterranean-type land snail Theba pisana from different habitats.
View Article and Find Full Text PDFIn contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce.
View Article and Find Full Text PDF