Transmetalation represents an appealing strategy toward fabricating and tuning functional metal-organic polymers and frameworks for diverse applications. In particular, building two-dimensional metal-organic and organometallic networks affords versatile nanoarchitectures of potential interest for nanodevices and quantum technology. The controlled replacement of embedded metal centers holds promise for exploring versatile material varieties by serial modification and different functionalization.
View Article and Find Full Text PDFThis study evaluated the fracture resistance of endodontically treated maxillary premolars restored with a new self-adhesive composite hybrid material (Surefil one [SO]) using different protocols. A total of 72 maxillary premolars were divided into 6 groups (n = 12). The control group included intact teeth, and the other 5 groups included teeth in which disto-occlusal cavities were prepared and endodontic treatment was performed.
View Article and Find Full Text PDFGraphene nanostructures offer wide range of applications due to their distinguished and tunable electronic properties. Recently, atomic and molecular graphene were modeled following simple free-electron scattering by periodic muffin tin potential leading to remarkable agreement with density functional theory. Here we extend the analogy of the -electronic structures and quantum effects between atomic graphene quantum dots (QDs) and homogeneous planer metallic counterparts of similar size and shape.
View Article and Find Full Text PDFGraphyne (GY) and graphdiyne (GDY)-based monolayers represent the next generation 2D carbon-rich materials with tunable structures and properties surpassing those of graphene. However, the detection of band formation in atomically thin GY/GDY analogues has been challenging, as both long-range order and atomic precision have to be fulfilled in the system. The present work reports direct evidence of band formation in on-surface synthesized metallated Ag-GDY sheets with mesoscopic (≈1 µm) regularity.
View Article and Find Full Text PDFThe provision of mobility exercises through a smartphone application (app) for people undertaking neurological rehabilitation may improve mobility outcomes. However, it is difficult for clinicians and consumers to select high-quality, appropriate apps. This review aimed to identify (1) which mobile health (mHealth) apps are suitable for prescribing mobility exercises for adults with neurological health conditions, (2) how well these apps incorporate telehealth strategies, and (3) how well these apps rate in terms of quality and capacity for behaviour change.
View Article and Find Full Text PDF