Faithful chromosome segregation in budding yeast requires correct positioning of the mitotic spindle along the mother to daughter cell polarity axis. When the anaphase spindle is not correctly positioned, a surveillance mechanism, named as the spindle position checkpoint (SPOC), prevents the progression out of mitosis until correct spindle positioning is achieved. How SPOC works on a molecular level is not well understood.
View Article and Find Full Text PDFThe re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S.
View Article and Find Full Text PDFBackground: The nuclear Dbf2 related (NDR) family of protein kinases play important roles in cell-cycle regulation, apoptosis, cell morphogenesis, and development in a variety of organisms. In budding yeast, the NDR kinase complex composed of Cbk1 and its regulatory subunit, Mob2, have an established role in the control of cell separation/abscission that follows cytokinesis. Whereas the activators of Cbk1-Mob2 have been more extensively described, the mechanisms that restrict or inhibit Cbk1-Mob2 catalytic activity remain largely unknown.
View Article and Find Full Text PDFThe control of the cell cycle in eukaryotes is exerted in part by the coordinated action of a series of transcription factor complexes. This is exemplified by the Mcm1p-Fkh2p-Ndd1p complex in Saccharomyces cerevisiae, which controls the cyclical expression of the CLB2 cluster of genes at the G(2)/M phase transition. The activity of this complex is positively controlled by cyclin-dependent kinase (CDK) and polo kinases.
View Article and Find Full Text PDFTranscriptional control is exerted by the antagonistic activities of activator and repressor proteins. In Saccharomyces cerevisiae, transcription factor complexes containing the MADS box protein Mcm1p are key regulators of cell cycle-dependent transcription at both the G2/M and M/G1 transitions. The homeodomain repressor protein Yox1p acts in a complex with Mcm1p to control the timing of gene expression.
View Article and Find Full Text PDF