Publications by authors named "Yvonne R Cornejo"

Background: Photothermal therapy is currently under the spotlight to improve the efficacy of minimally invasive thermal treatment of solid tumors. The interplay of several factors including the radiation wavelengths and the nanoparticle characteristics underlie the thermal outcome. However, a quantitative thermal analysis in models embedding nanoparticles and under different near-infrared (NIR) wavelengths is missing.

View Article and Find Full Text PDF

Ovarian cancer is the most lethal gynecological malignancy in the United States. Current standard of treatment includes surgical debulking and chemotherapy, such as cisplatin and paclitaxel. However, the patients' response rate for chemotherapy in ovarian cancer is not optimal, and they often develop chemoresistance and suffer from side effects.

View Article and Find Full Text PDF

Oncolytic virotherapy represents a promising approach for treating recurrent and/or drug-resistant ovarian cancer. However, its successful application in the clinic has been hampered by rapid immune-mediated clearance, which reduces viral delivery to the tumor. Patient-derived mesenchymal stem cells that home to tumors have been used as viral delivery tools, but variability associated with autologous cell isolations limits the clinical applicability of this approach.

View Article and Find Full Text PDF

Immunotherapy is emerging as one of the most effective methods for treating many cancers. However, immunotherapy can still introduce significant off-target toxicity, and methods are sought to enable targeted immunotherapy at tumor sites. Here, we show that relatively large (>100-nm) anionic nanoparticles administered intraperitoneally (i.

View Article and Find Full Text PDF

A great deal of attention has been focused on nanoparticles for cancer therapy, with the promise of tumor-selective delivery. However, despite intense work in the field over many years, the biggest obstacle to this vision remains extremely low delivery efficiency of nanoparticles into tumors. Due to the cost, time, and impact on the animals for in vivo studies, the nanoparticle field predominantly uses cellular uptake assays as a proxy to predict in vivo outcomes.

View Article and Find Full Text PDF

Ovarian cancer is commonly diagnosed only after it has metastasized to the abdominal cavity (stage III). While the current standard of care of intraperitoneal (IP) administration of cisplatin and paclitaxel (PTX) combination chemotherapy has benefit, patient 5-year survival rates are low and have not significantly improved in the past decade. The ability to target chemotherapy selectively to ovarian tumors while sparing normal tissue would improve efficacy and decrease toxicities.

View Article and Find Full Text PDF