Due to substantial improvements in read accuracy, third-generation long-read sequencing holds great potential in blood group diagnostics, particularly in cases where traditional genotyping or sequencing techniques, primarily targeting exons, fail to explain serological phenotypes. In this study, we employed Oxford Nanopore sequencing to resolve all genotype-phenotype discrepancies in the Kidd blood group system (JK, encoded by ) observed over seven years of routine high-throughput donor genotyping using a mass spectrometry-based platform at the Blood Transfusion Service, Zurich. Discrepant results from standard serological typing and donor genotyping were confirmed using commercial PCR-SSP kits.
View Article and Find Full Text PDFBackground And Objectives: Mixed-field agglutination in ABO phenotyping (A, B) has been linked to genetically different blood cell populations such as in chimerism, or to rare variants in either ABO exon 7 or regulatory regions. Clarification of such cases is challenging and would greatly benefit from sequencing technologies that allow resolving full-gene haplotypes at high resolution.
Materials And Methods: We used long-read sequencing by Oxford Nanopore Technologies to sequence the entire ABO gene, amplified in two overlapping long-range PCR fragments, in a blood donor presented with AB phenotype.
In the era of blood group genomics, reference collections of complete and fully resolved blood group gene alleles have gained high importance. For most blood groups, however, such collections are currently lacking, as resolving full-length gene sequences as haplotypes (ie, separated maternal/paternal origin) remains exceedingly difficult with both Sanger and short-read next-generation sequencing. Using the latest third-generation long-read sequencing, we generated a collection of fully resolved sequences for all 6 main ABO allele groups: ABO∗A1/A2/B/O.
View Article and Find Full Text PDFBackground: McLeod syndrome (MLS) is hematologically defined by the absence of the red blood cell (RBC) antigen Kx on the transmembrane RBC protein, XK, representing a highly specific diagnostic marker. Direct molecular assessment of XK therefore represents a desirable diagnostic tool. Whereas pathogenic point mutations may be simply identified, partial and complete deletions of XK on Xp21.
View Article and Find Full Text PDFThe GYPC gene encodes the glycophorins C and D. The two moieties express 12 known antigens of the Gerbich blood group system and functionally stabilize red blood cell membranes through their intracellular interaction with protein 4.1 and p55.
View Article and Find Full Text PDF