Background: Glucose overload drives diabetic cardiomyopathy by affecting the tricarboxylic acid pathway. However, it is still unknown how cells could overcome massive chronic glucose influx on cellular and structural level.
Methods/materials: Expression profiles of hyperglycemic, glucose transporter-4 (GLUT4) overexpressing H9C2 (KE2) cardiomyoblasts loaded with 30 mM glucose (KE230L) and wild type (WT) cardiomyoblasts loaded with 30 mM glucose (WT30L) were compared using proteomics, real-time polymerase quantitative chain reaction analysis, or Western blotting, and immunocytochemistry.
An oversupply of nutrients with a loss of metabolic flexibility and subsequent cardiac dysfunction are hallmarks of diabetic cardiomyopathy. Even if excess substrate is offered, the heart suffers energy depletion as metabolic fluxes are diminished. To study the effects of a high glucose supply, a stably glucose transporter type 4 (GLUT4)-overexpressing cell line presenting an onset of diabetic cardiomyopathy-like phenotype was established.
View Article and Find Full Text PDFMethylglyoxal (MG), an arginine-directed glycating agent, is implicated in diabetic late complications. MG is detoxified by glyoxalase 1 (GLO1) of the cytosolic glyoxalase system. The aim was to investigate the effects of MG accumulation by GLO1-knockdown under hyperglycaemic conditions in human aortic endothelial cells (HAECs) hypothesizing that the accumulation of MG accounts for the deleterious effects on vascular function.
View Article and Find Full Text PDF