Vascular endothelial growth factor (VEGF) is one of the major mediators of retinal ischemia-associated neovascularization. We have shown here that adeno-associated virus (AAV)-mediated expression of sFlt-1, a soluble form of the Flt-1 VEGF receptor, was maintained for up to 8 and 17 months postinjection in mice and in monkeys, respectively. The expression of sFlt-1 was associated with the long-term (8 months) regression of neovascular vessels in 85% of trVEGF029 eyes.
View Article and Find Full Text PDFPurpose: Recombinant adeno-associated virus (rAAV)-mediated gene delivery has emerged as a valuable tool for alternative treatment of ocular diseases. Cellular specificity of transgene expression could be influenced by either the viral capsid or the choice of promoter. The use of cellular promoter, cathepsin D (CatD) proximal promoter, and its potential for application in rAAV-based gene therapy are evaluated in this study.
View Article and Find Full Text PDFWe recently reported that different purification methods of recombinant adeno-associated virus type 2 (rAAV2) affect the transduction characteristics following subretinal injection. In this study, we examined the roles of contaminant proteins from the HEK-293 cells and helper adenovirus, inactivation of helper adenovirus and cell stress induced by DNA-damaging agents in rAAV-mediated retinal transduction. Our results showed that contaminating factors/proteins resulting from the helper E1 deleted adenovirus are possibly responsible for efficient RPE transduction.
View Article and Find Full Text PDFBackground: Photoreceptor (PR) and retinal pigment epithelium (RPE) are the principal cell targets in retinal gene therapy. Recombinant adeno-associated virus (rAAV) has emerged as a very promising vector for gene therapy in hereditary retinal diseases. Gene transfer at different stages of the disease is a practical consideration for future clinical application.
View Article and Find Full Text PDFRecombinant adenovirus (rAd) and recombinant adeno-associated virus (rAAV) are among the most extensively used vectors in gene therapy studies to date. These two vectors share some similar features such as a broad host range and ability to infect both proliferating and quiescent cells. However, they also possess their own unique set of properties that render them particularly attractive for gene therapy applications.
View Article and Find Full Text PDF