Publications by authors named "Yvonne Herrerias-Diego"

Premise: Habitat fragmentation negatively affects population size and mating patterns that directly affect progeny fitness and genetic diversity; however, little is known about the effects of habitat fragmentation on dioecious, wind pollinated trees. We assessed the effects of habitat fragmentation on population sex ratios, genetic diversity, gene flow, mating patterns, and early progeny vigor in the tropical dioecious tree, Brosimum alicastrum.

Methods: We conducted our study in three continuous and three fragmented forest sites in a Mexican tropical dry forest.

View Article and Find Full Text PDF

Background: The Pantosteus plebeius-nebuliferus species-group is a group of freshwater fishes distributed in endo- and exorheic drainage basins in the Mexican Sierra Madre Occidental mountain range system and central North Mexico. The geological history of this region is considered an important factor in explaining the evolutionary history of low vagility animals like freshwaters fishes. The aim of this study was to examine the phylogenetic relationships and describe the evolutionary history of the species-group.

View Article and Find Full Text PDF

Premise Of The Study: Tropical forest loss and fragmentation isolate and reduce the size of remnant populations with negative consequences for mating patterns and genetic structure of plant species. In a 4-yr study, we determined the effect of fragmentation on mating patterns and pollen pool genetic structure of the tropical tree Ceiba aesculifolia in two habitat conditions: isolated trees in disturbed areas (≤3 trees/ha), and trees (≥6 trees/ha) in undisturbed mature forest. •

Methods: Using six allozyme loci, we estimated the outcrossing rate (tm), the mean relatedness of progeny (rp) within and between fruits, the degree of genetic structure of pollen pools (Φft), and the effective number of pollen donors (Nep).

View Article and Find Full Text PDF

Conservation of genetic diversity, one of the three main forms of biodiversity, is a fundamental concern in conservation biology as it provides the raw material for evolutionary change and thus the potential to adapt to changing environments. By means of meta-analyses, we tested the generality of the hypotheses that habitat fragmentation affects genetic diversity of plant populations and that certain life history and ecological traits of plants can determine differential susceptibility to genetic erosion in fragmented habitats. Additionally, we assessed whether certain methodological approaches used by authors influence the ability to detect fragmentation effects on plant genetic diversity.

View Article and Find Full Text PDF

Spatial isolation caused by forest fragmentation and temporal isolation caused by asynchronous flowering of plants have been proposed as important factors that affect the reproduction ofplant populations. In a 4-year study, we determined the effects of forest fragmentation and spatial isolation on flowering phenology and reproductive success of the tropical tree Ceiba aesculifolia ([Kunth] Britton & Rose). We conducted our study in the dry forest of Mexico and compared populations in two habitat conditions based on density and environmental conditions: (1) disturbed habitat (four populations of < or =3 reproductive individuals/ha surrounded by agriculturalfields or pastures) and (2) undisturbed habitat (three populations of groups of >6 reproductive individuals/ha surrounded by undisturbed mature forest).

View Article and Find Full Text PDF

We compared phenological patterns of tree species of the family Bombacaceae in three seasonal forests in Mexico and Costa Rica whose dry seasons vary in duration and intensity. The objectives were to (1) determine intraspecific variation in phenology between sites in different geographic locations with different precipitation regimes, (2) compare interspecific phenological patterns within sites during one year, and (3) document seasonal pollinator use of floral resources at one site in relation to the flowering phenology of these species. To determine the sequence of phenological events in trees of the family Bombacaceae across three study sites, phenology of marked individuals was recorded every 2 wk from September 2000 through August 2001 for six species.

View Article and Find Full Text PDF