We report the first electrophysiological investigation of the inverse base-rate effect (IBRE), a robust non-rational bias in predictive learning. In the IBRE, participants learn that one pair of symptoms (AB) predicts a frequently occurring disease, whilst an overlapping pair of symptoms (AC) predicts a rarely occurring disease. Participants subsequently infer that BC predicts the rare disease, a non-rational decision made in opposition to the underlying base rates of the two diseases.
View Article and Find Full Text PDF