Publications by authors named "Yvonne Dommels"

The world's hunger for novel food ingredients drives the development of safe, sustainable, and nutritious novel food products. For foods containing novel proteins, potential allergenicity of the proteins is a key safety consideration. One such product is a fungal biomass obtained from the fermentation of Rhizomucor pusillus.

View Article and Find Full Text PDF

To address the growing world population and reduce the impact of environmental changes on the global food supply, ingredients are being produced using microorganisms to yield sustainable and innovative products. Food ingredients manufactured using modern biotechnology must be produced by non-toxigenic and nonpathogenic production organisms that do not harbor antimicrobial resistance (AMR). Several fungal species represent attractive targets as sources of alternative food products.

View Article and Find Full Text PDF

Background: Intestinal bacteria are thought to play a role in the pathogenesis of human inflammatory bowel disease (IBD). We investigated whether oral inoculation with specific intestinal bacteria increased colon inflammation in the multi-drug resistance 1a-deficient (Mdr1a (-/-) ) mouse model of IBD.

Methods: Five-week-old Mdr1a (-/-) mice (FVB background) and FVB mice were randomly assigned to one of two treatment groups (Control or Inoculation, n = 12 per group).

View Article and Find Full Text PDF

The aim of this study was to provide insight into how curcumin reduces colon inflammation in the Mdr1a(-/-) mouse model of human inflammatory bowel disease using a combined transcriptomics and proteomics approach. Mdr1a(-/-) and FVB control mice were randomly assigned to an AIN-76A (control) diet or AIN-76A+0.2% curcumin.

View Article and Find Full Text PDF

Animal models are an important tool to understand the complex pathogenesis of inflammatory bowel diseases (IBDs). This study tested the anti-inflammatory potential of a green tea extract rich in polyphenols (GrTP) in the colon of the multidrug resistance targeted mutation (Mdr1a(-/-)) mouse model of IBD. Insights into mechanisms responsible for this reduction in inflammation were gained using transcriptome and proteome analyses.

View Article and Find Full Text PDF

Cancer cells are resistant to apoptosis and show a shift in energy production from mitochondrial oxidative phosphorylation to cytosolic glycolysis. Apoptosis resistance and metabolic reprogramming are linked in many cancer cells and both processes center on mitochondria. Clearly, mutated cancer cells escape surveillance and turn into selfish cells.

View Article and Find Full Text PDF

Background/aims: Dietary n-3 polyunsaturated fatty acids can reduce inflammation via a range of mechanisms. This study tested the effect of dietary eicosapentaenoic acid (EPA) on intestinal inflammation using interleukin-10 gene-deficient (Il10(-/-)) mice.

Methods: At 35 days of age, 12 weaned Il10(-/-) and 12 C57 mice were randomly assigned to one of two modified AIN-76A diets, supplemented with 3.

View Article and Find Full Text PDF

Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Therefore, probiotic strains should be able to survive passage through the human gastrointestinal tract. Human gastrointestinal tract survival of probiotics in a low-fat spread matrix has, however, never been tested.

View Article and Find Full Text PDF

Damage of the intestinal epithelial barrier by xenobiotics or reactive oxygen species and a dysregulated immune response are both factors involved in the pathogenesis of inflammatory bowel diseases (IBD). Curcumin and rutin are polyphenolic compounds known to have antioxidant and anti-inflammatory activities, but their mechanism(s) of action are yet to be fully elucidated. Multidrug resistance gene-deficient (mdr1a-/- ) mice spontaneously develop intestinal inflammation, predominantly in the colon, with pathology similar to IBD, so this mouse model is relevant for studying diet-gene interactions and potential effects of foods on remission or development of IBD.

View Article and Find Full Text PDF

Folate, a water-soluble B vitamin, is a cofactor in one-carbon metabolism and is essential for DNA synthesis, amino acid interconversion, methylation and, consequently, normal cell growth. In animals with existing pre-neoplastic and neoplastic lesions, folic acid supplementation increases the tumour burden. To identify processes that are affected by increased folic acid levels, we compared HT29 human colon cancer cells exposed to a chronic supplemental (100 ng/ml) level of folic acid to cells exposed to a normal (10 ng/ml) level of folic acid, in the presence of vitamin B12 and other micronutrients involved in the folate-methionine cycle.

View Article and Find Full Text PDF

To be able to perform a comprehensive and rigorous benefit-risk analysis of individual food components, and of foods, a number of fundamental questions need to be addressed first. These include whether it is feasible to detect all relevant biological effects of foods and individual food components, how such effects can confidently be categorised into benefits and risks in relation to health and, for that matter, how health can be quantified. This article examines the last of these issues, focusing upon concepts for the development of new biomarkers of health.

View Article and Find Full Text PDF

In vivo models of Inflammatory Bowel Diseases (IBD) elucidate important mechanisms of chronic inflammation. Complex intestinal responses to food components create a unique "fingerprint" discriminating health from disease. Five-week-old IL10(-/-) and C57BL/6J (C57; control) mice were inoculated orally with complex intestinal microflora (CIF) and/or pure cultures of Enterococcus faecalis and E.

View Article and Find Full Text PDF

Individuals respond differently to nutrients and foods. This is reflected in different levels of benefits and risks at the same intake of a nutrient and, consequently, different 'windows of benefit' in terms of nutrient intake. This has led recently to the concept of 'personalised nutrition'.

View Article and Find Full Text PDF

Glutathione (GSH) plays an important role in cellular defense response in many in vitro and in vivo models. Here we investigated its role in NO()-induced toxicity in cell culture and mouse models. Wild-type (TK6) and p53-null (NH32) human lymphoblastoid cells were treated with NO(.

View Article and Find Full Text PDF

Modulating effects of high fat fish oil (HFFO) and high fat corn oil (HFCO) diets on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) were studied in male F344 rats following 8 weeks of dietary treatment. The incidence of AOM-induced ACF was significantly lower in the proximal colon of rats fed the HFFO diets compared with rats fed the HFCO diets. No differential effects were found on enzyme activities that are involved in metabolic activation and detoxification of AOM.

View Article and Find Full Text PDF

Here, we describe a proteomics approach to study protein expression changes in differentiating Caco-2 cells. Caco-2 is a colorectal carcinoma cell line, which upon differentiation loses its tumorigenic phenotype and displays characteristics of mature enterocytes, including brush borders with microvilli. Cells were grown in culture flasks and harvested at different stages of differentiation (days post-confluence: -3, 0, 3, 7, 10, 14, and 18).

View Article and Find Full Text PDF

This study was conducted to investigate the role of the enzyme cyclooxygenase (COX) and its prostaglandin product PGE(2) in n-6 and n-3 polyunsaturated fatty acid (PUFA)-mediated effects on cellular proliferation of two human colorectal carcinoma cell lines. The long chain PUFAs eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (AA; 20:4n-6) both inhibited cell proliferation of Caco-2 cells compared with the long chain fatty acids alpha-linolenic acid (ALA; 18:3n-3) and linoleic acid (LA; 18:2n-6). Neither incubation with PGE(2) nor reduction in PGE(2) synthesis by EPA compared with AA led to differential effects on cell proliferation in Caco-2 cells.

View Article and Find Full Text PDF

Gap junctional intercellular communication (GJIC), which modulates cell growth and differentiation, may play an important role in tumor growth. Cancer cells have dysfunctional GJIC, but it is not known whether GJIC is mechanistically involved in the carcinogenic and anti-carcinogenic effects of n-6 and n-3 polyunsaturated fatty acids (PUFAs) on colon tumor cells. Caco-2 cells were used as an in vitro model to study the effects of PUFAs on differentiated as well as undifferentiated human colon cells.

View Article and Find Full Text PDF

During the past few decades, many studies have been conducted to evaluate the effects of n-6 and n-3 polyunsaturated fatty acids (PUFAs) on colorectal carcinogenesis. This report provides a brief overview of the recent studies that have been performed in cultured colon cells, animal models as well as of the population-based and short-term biomarker studies with humans. No differential effect between n-6 and n-3 PUFAs has been observed in vitro.

View Article and Find Full Text PDF