Publications by authors named "Yvona Mazurova"

All anthracyclines, including doxorubicin (DOXO), the most common and still indispensable drug, exhibit cardiotoxicity with inherent risk of irreversible cardiomyopathy leading to heart failure with reduced ejection fraction (HFrEF). Current pharmacological strategies are clearly less effective for this type of HFrEF, hence an urgent need for new therapeutic approaches. The prerequisite for success is thorough understanding of pathophysiology of this HFrEF form, which requires an appropriate animal model of the disease.

View Article and Find Full Text PDF

Anthracycline cardiotoxicity is a well-known complication of cancer treatment, and miRNAs have emerged as a key driver in the pathogenesis of cardiovascular diseases. This study aimed to investigate the expression of miRNAs in the myocardium in early and late stages of chronic anthracycline induced cardiotoxicity to determine whether this expression is associated with the severity of cardiac damage. Cardiotoxicity was induced in rabbits via daunorubicin administration (daunorubicin, 3 mg/kg/week; for five and 10 weeks), while the control group received saline solution.

View Article and Find Full Text PDF

Angiotensin-converting enzyme inhibitors (ACEis) have been used to treat anthracycline (ANT)-induced cardiac dysfunction, and they appear beneficial for secondary prevention in high-risk patients. However, it remains unclear whether they truly prevent ANT-induced cardiac damage and provide long-lasting cardioprotection. The present study aimed to examine the cardioprotective effects of perindopril on chronic ANT cardiotoxicity in a rabbit model previously validated with the cardioprotective agent dexrazoxane (DEX) with focus on post-treatment follow-up (FU).

View Article and Find Full Text PDF

Background: Anthracycline-induced heart failure has been traditionally attributed to direct iron-catalyzed oxidative damage. Dexrazoxane (DEX)-the only drug approved for its prevention-has been believed to protect the heart via its iron-chelating metabolite ADR-925. However, direct evidence is lacking, and recently proposed TOP2B (topoisomerase II beta) hypothesis challenged the original concept.

View Article and Find Full Text PDF

The anthracycline (ANT) anticancer drugs such as doxorubicin or daunorubicin (DAU) can cause serious myocardial injury and chronic cardiac dysfunction in cancer survivors. A bisdioxopiperazine agent dexrazoxane (DEX) has been developed as a cardioprotective drug to prevent these adverse events, but it is uncertain whether it is the best representative of the class. The present study used a rabbit model of chronic ANT cardiotoxicity to examine another bisdioxopiperazine compound called GK-667 (meso-(butane-2,3-diylbis(2,6-dioxopiperazine-4,1-diyl))bis(methylene)-bis(2-aminoacetate) hydrochloride), a water-soluble prodrug of ICRF-193 (meso-4,4'-(butan-2,3-diyl)bis(piperazine-2,6-dione)), as a potential cardioprotectant.

View Article and Find Full Text PDF

Bisdioxopiperazine agent dexrazoxane (ICRF-187) has been the only effective and approved drug for prevention of chronic anthracycline cardiotoxicity. However, the structure-activity relationships (SARs) of its cardioprotective effects remain obscure owing to limited investigation of its derivatives/analogs and uncertainties about its mechanism of action. To fill these knowledge gaps, we tested the hypothesis that dexrazoxane derivatives exert cardioprotection via metal chelation and/or modulation of topoisomerase II (Top2B) activity in chronic anthracycline cardiotoxicity.

View Article and Find Full Text PDF

Although proteasome inhibitors (PIs) are modern targeted anticancer drugs, they have been associated with a certain risk of cardiotoxicity and heart failure (HF). Recently, PIs have been combined with anthracyclines (ANTs) to further boost their anticancer efficacy. However, this raised concerns regarding cardiac safety, which were further supported by several studies on immature cardiomyocytes.

View Article and Find Full Text PDF

Chronic anthracycline (ANT) cardiotoxicity is a serious complication of cancer chemotherapy. Molsidomine, a NO-releasing drug, has been found cardioprotective in different models of I/R injury and recently in acute high-dose ANT cardiotoxicity. Hence, we examined whether its cardioprotective effects are translatable to chronic ANT cardiotoxicity settings without induction of nitrosative stress and interference with antiproliferative action of ANTs.

View Article and Find Full Text PDF

Dexrazoxane (DEX) is a clinically available cardioprotectant that reduces the toxicity induced by anthracycline (ANT) anticancer drugs; however, DEX is seldom used and its action is poorly understood. Inorganic nitrate/nitrite has shown promising results in myocardial ischemia-reperfusion injury and recently in acute high-dose ANT cardiotoxicity. However, the utility of this approach for overcoming clinically more relevant chronic forms of cardiotoxicity remains elusive.

View Article and Find Full Text PDF

Background: Cardiac troponins (cTns) seem to be more sensitive for the detection of anthracycline cardiotoxicity than the currently recommended method of monitoring LV systolic function. However, the optimal timing of blood sampling remains unknown. Hence, the aims of the present study were to determine the precise diagnostic window for cTns during the development of chronic anthracycline cardiotoxicity and to evaluate their predictive value.

View Article and Find Full Text PDF

Rats transgenic for Huntington's disease (tgHD51 CAG rats), surviving up to two years, represent an animal model of HD similar to the late-onset form of human disease. This enables us to follow histopathological changes in course of neurodegenerative process (NDP) within the striatum and compare them with postmortem samples of human HD brains. A basic difference between HD pathology in human and tgHD51 rats is in the rate of NDP progression that originates primarily from slow neuronal degeneration consequently resulting in lesser extent of concomitant reactive gliosis in the brain of tgHD51 rats.

View Article and Find Full Text PDF

Chronic anthracycline cardiotoxicity is a serious clinical issue with well characterized functional and histopathological hallmarks. However, molecular determinants of the toxic damage and associated myocardial remodeling remain to be established. Furthermore, details on the different propensity of the left and right ventricle (LV and RV, respectively) to the cardiotoxicity development are unknown.

View Article and Find Full Text PDF

Despite incomplete understanding to its mechanism of action, dexrazoxane (DEX) is still the only clearly effective cardioprotectant against chronic anthracycline (ANT) cardiotoxicity. However, its clinical use is currently restricted to patients exceeding significant ANT cumulative dose (300mg/m(2)), although each ANT cycle may induce certain potentially irreversible myocardial damage. Therefore, the aim of this study was to compare early and delayed DEX intervention against chronic ANT cardiotoxicity and study the molecular events involved.

View Article and Find Full Text PDF

Aim: To evaluate the anticancer effect of alpha-tomatine (i.p.) either alone or in combination with doxorubicin (i.

View Article and Find Full Text PDF

The evidence for the existence of neurogenesis in the adult mammalian brain, including humans is now widely accepted. Despite the fact that adult neural stem cells appear to be very promising, a wide range of their unrevealed properties, abilities but also limitations under physiological and especially pathological conditions still need to be investigated and explained. Huntington's disease (HD) is characterized by successive degeneration of relatively well-defined neuronal population.

View Article and Find Full Text PDF

Chronic anthracycline cardiotoxicity is a feared complication of cancer chemotherapy. However, despite several decades of primarily hypothesis-driven research, the molecular basis of this phenomenon remains poorly understood. The aim of this study was to obtain integrative molecular insights into chronic anthracycline cardiotoxicity and the resulting heart failure.

View Article and Find Full Text PDF

Although Huntington's disease (HD) occurs only in humans, the use of animal models is crucial for HD research. New genetic models may provide novel insights into HD pathogenesis, but their relevance to human HD is problematic, particularly owing to a lower number of typically degenerated and dying striatal neurons and consequent insignificant reactive gliosis. Hence, neurotoxin-induced animal models are widely used for histopathological studies.

View Article and Find Full Text PDF

Coronary heart disease and in particular its most serious form - acute myocardial infarction (AMI) - represents the most common cause of mortality in developed countries. Better prognosis may be achieved by understanding the etiopathogenetic mechanisms of AMI. Therefore, a catecholamine model of myocardial injury, which has appeared to be very similar to AMI in human in some aspect, was used.

View Article and Find Full Text PDF

Iron (Fe) chelators are used clinically for the treatment of Fe overload disease. Iron also plays a role in the pathology of many other conditions, and these potentially include the cardiotoxicity induced by catecholamines such as isoprenaline (ISO). The current study examined the potential of Fe chelators to prevent ISO cardiotoxicity.

View Article and Find Full Text PDF

Lactoferrin is recently under intense investigation because of its proposed several pharmacologically positive effects. Based on its iron-binding properties and its physiological presence in the human body, it may have a significant impact on pathological conditions associated with iron-catalysed reactive oxygen species (ROS). Its effect on a catecholamine model of myocardial injury, which shares several pathophysiological features with acute myocardial infarction (AMI) in humans, was examined.

View Article and Find Full Text PDF

Anthracycline cardiotoxicity ranks among the most severe complications of cancer chemotherapy. Although its pathogenesis is only incompletely understood, "reactive oxygen species (ROS) and iron" hypothesis has gained the widest acceptance. Besides dexrazoxane, novel oral iron chelator deferiprone has been recently reported to afford significant cardioprotection in both in vitro and ex vivo conditions.

View Article and Find Full Text PDF

The risk of cardiotoxicity is the main drawback of anthracycline antibiotics. However, these drugs remain among the most effective and frequently used anti cancer drugs. In this study we aimed to assess the cardioprotective effects of aroylhydrazone iron (FE) chelators: pyridoxal isonicotinoyl hydrazone (PIH) and its two analogs: salicyladehyde isonicotinoyl hydrazone (SIH) and pyridoxal o-chlorbenzoyl hydrazone (o-108).

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs), activated by oxidative stress, play a key role during cardiac remodeling. In the present study we aimed to assess the role of MMPs in experimental cardiomyopathy induced by repeated 10-week administration of daunorubicin (3 mg/kg i.v.

View Article and Find Full Text PDF

Pyridoxal-derived aroylhydrazone iron chelators have been previously shown as effective cardioprotectants against chronic anthracycline cardiotoxicity. In this study we focused on a novel salicylaldehyde analogue (salicylaldehyde isonicotinoyl hydrazone, SIH), which has been recently demonstrated to possess marked and dose-dependent protective effects against oxidative injury of cardiomyocytes. Therefore, in the present study the cardioprotective potential of SIH against daunorubicin (DAU) cardiotoxicity was assessed in vitro (isolated rat ventricular cardiomyocytes; DAU 10 microM, 48 h exposure) as well as in vivo (chronic DAU-induced cardiomyopathy in rabbits; DAU 3mg/kg, i.

View Article and Find Full Text PDF

Iron chelation is the only pharmacological intervention against anthracycline cardiotoxicity whose effectiveness has been well documented both experimentally and clinically. In this study, we aimed to assess whether pyridoxal 2-chlorobenzoyl hydrazone (o-108, a strong iron chelator) can provide effective protection against daunorubicin (DAU)-induced chronic cardiotoxicity in rabbits. First, using the HL-60 leukemic cell line, it was shown that o-108 has no potential to blunt the antiproliferative efficacy of DAU.

View Article and Find Full Text PDF