This paper details the development and validation of a temperature sensing methodology using an un-trimmed oscillator-based integrated sensor implemented in the 0.18-μm SOI XFAB process, with a focus on thermal monitoring in system-on-chip (SoC) based DC-DC converters. Our study identifies a quadratic relationship between the oscillator output frequency and temperature, which forms the basis of our proposed calibration mechanism.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Epilepsy is a life-threatening disease affecting millions of people all over the world. Artificial intelligence epileptic predictors offer excellent potential to improve epilepsy therapy. Particularly, deep learning models such as convolutional neural networks (CNN) can be used to accurately detect ictogenesis through deep structured learning representations.
View Article and Find Full Text PDFThis paper presents a method to monitor the thermal peaks that are major concerns when designing Integrated Circuits (ICs) in various advanced technologies. The method aims at detecting the thermal peak in Systems on Chip (SoC) using arrays of oscillators distributed over the area of the chip. Measured frequencies are mapped to local temperatures that are used to produce a chip thermal mapping.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
February 2022
A miniaturized biosensor for carbamazepine (CBZ) detection and quantification was designed, implemented and fabricated. The 1×1 mm CMOS chip was packaged and coupled with a 3-electrode electrochemical cell. A complete characterization of the sensor was conducted via two steps: 1) Molecular imprinting of PEDOT polymer sites by cyclic voltammetry (CV) on glassy carbon electrode (GCE) surfaces; and 2) Quantification of CBZ solutions through both CV, and a current peak detection circuitry.
View Article and Find Full Text PDFBreathing rate monitoring is a must for hospitalized patients with the current coronavirus disease 2019 (COVID-19). We review in this paper recent implementations of breathing monitoring techniques, where both contact and remote approaches are presented. It is known that with non-contact monitoring, the patient is not tied to an instrument, which improves patients' comfort and enhances the accuracy of extracted breathing activity, since the distress generated by a contact device is avoided.
View Article and Find Full Text PDFThis paper proposes a real-time thermal monitoring method using embedded integrated sensor interfaces dedicated to industrial integrated system applications. Industrial sensor interfaces are complex systems that involve analog and mixed signals, where several parameters can influence their performance. These include the presence of heat sources near sensitive integrated circuits, and various heat transfer phenomena need to be considered.
View Article and Find Full Text PDFA fully-integrated data transmission system based on gallium nitride (GaN) high-electron-mobility transistor (HEMT) devices is proposed. This system targets high-temperature (HT) applications, especially those involving pressure and temperature sensors for aerospace in which the environmental temperature exceeds 350 °C. The presented system includes a front-end amplifying the sensed signal (gain of 50 V/V), followed by a novel analog-to-digital converter driving a modulator exploiting the load-shift keying technique.
View Article and Find Full Text PDFDue to the constantly growing geriatric population and the projected increase of the prevalence of chronic diseases that are refractory to drugs, implantable medical devices (IMDs) such as neurostimulators, endoscopic capsules, artificial retinal prostheses, and brain-machine interfaces are being developed. According to many business forecast firms, the IMD market is expected to grow and they are subject to much research aiming to overcome the numerous challenges of their development. One of these challenges consists of designing a wireless power and data transmission system that has high power efficiency, high data rates, low power consumption, and high robustness against noise.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
August 2012
We present, in this paper, a new full-wave CMOS rectifier dedicated for wirelessly-powered low-voltage biomedical implants. It uses bootstrapped capacitors to reduce the effective threshold voltage of selected MOS switches. It achieves a significant increase in its overall power efficiency and low voltage-drop.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
An integrated biosensor for the detection of micron-size biological entities using Magnetotactic Bacteria (MTB) being guided under the control of an external magnetic field of a few Gauss is briefly described. The proposed biosensor will be implemented onto a silicon substrate compatible with standard CMOS technologies. To validate the proposed concept, a microfluidic device and a microelectronic chip have been fabricated.
View Article and Find Full Text PDF