Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g.
View Article and Find Full Text PDFStudies on human norovirus are severely hampered by the absence of a cell culture system until the discovery of murine norovirus (MNV). The cell membrane domains called lipid rafts have been defined as a port of entry for viruses. This study is conducted to investigate murine norovirus binding on the mouse leukemic monocyte macrophage cell line.
View Article and Find Full Text PDFWe developed a new scheme for obtaining coherent random lasing based on a chip consisting of a polymer film doped with Rhodamine 6G, having as scatterers butterfly-like TiO(2) nanomembranes (TiO(2)-NM) supported on a glass substrate. The feedback mechanism for laser action is due to the multiple scattering of light by TiO(2)-NM rather than provided by localized variations of the refractive index in the polymer film. The above-threshold multiple spikes signature indicative of random laser emission with coherent feedback is confirmed.
View Article and Find Full Text PDFThe quantification of microstructural strains at the surface of materials is of major importance for understanding the reactivity of solids. The present paper aims at demonstrating the potentialities of the atomic force microscopy (AFM) for mapping the three-dimensional surface strain field on patterned tensile specimens. Electron beam (e-beam) lithography has been used to deposit 16 x 16 arrays of gold-squared pads.
View Article and Find Full Text PDFWe report on the near-field imaging of microstructured polymer layers deposited on an homogeneous metal thin film on which a surface plasmon mode is excited. The microstructures in the polymer layers are designed by electron beam lithography, and the near-field imaging is performed with a photon scanning tunneling microscope (PSTM). We show that, despite their very small height, the microstructures can be conveniently imaged with a PSTM thanks to the field enhancement at the surface of the metal thin film supporting the surface plasmon.
View Article and Find Full Text PDFAn electrochemical methodology for bio-molecule sensing using an array of well-defined nanostructures is presented. We describe the fabrication by e-beam lithography of nanoelectrodes consisting of a 100 micro m x 50 micro m area containing interdigitated electrodes of 100 nm in width and interelectrode distance of 200 nm. Sensitivity and response time of the nanoelectrodes are compared to the responses of macro- and microelectrodes.
View Article and Find Full Text PDF