Publications by authors named "Yvo Op den Kamp"

The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals.

View Article and Find Full Text PDF

Aims/hypothesis: Sodium-glucose cotransporter 2 inhibitor (SGLT2i) treatment in type 2 diabetes mellitus patients results in glucosuria, causing an energy loss, and triggers beneficial metabolic adaptations. It is so far unknown if SGLT2i exerts beneficial metabolic effects in prediabetic insulin resistant individuals, yet this is of interest since SGLT2is also reduce the risk for progression of heart failure and chronic kidney disease in patients without diabetes.

Methods: Fourteen prediabetic insulin resistant individuals (BMI: 30.

View Article and Find Full Text PDF

Objective: SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients.

Methods: Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out.

View Article and Find Full Text PDF

Objective: SGTL2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes. The underlying mechanism may involve caloric restriction-like metabolic effects due to urinary glucose loss. We investigated the effects of dapagliflozin on 24-h energy metabolism and insulin sensitivity in patients with type 2 diabetes.

View Article and Find Full Text PDF

Background: Low carnitine status may underlie the development of insulin resistance and metabolic inflexibility. Intravenous lipid infusion elevates plasma free fatty acid (FFA) concentration and is a model for simulating insulin resistance and metabolic inflexibility in healthy, insulin sensitive volunteers. Here, we hypothesized that co-infusion of L-carnitine may alleviate lipid-induced insulin resistance and metabolic inflexibility.

View Article and Find Full Text PDF