Publications by authors named "Yvette Ruiz"

Regulatory T cells can suppress activated T cell proliferation by direct cell-contact, although the exact mechanism is poorly understood. Identification of a Treg-specific cell surface molecule that mediates suppression would offer a unique target for cancer immunotherapy to inhibit Treg immunosuppressive function or deplete Tregs in the tumor microenvironment. In this study, we explored a method of whole cell immunization using a Treg-like cell line (MoT cells) to generate and screen monoclonal antibodies that bound cell surface proteins in their native conformations and functionally reversed Treg-mediated suppression.

View Article and Find Full Text PDF

QSOX1 is a sulfhydryl oxidase that has been identified as a potential biomarker in multiple cancer types as well as acute decompensated heart failure. Three anti-QSOX1 monoclonal antibodies (mAbs) were generated: 2F1, 3A10, and 56-3. MAbs 2F1 and 3A10 were generated against the short isoform of recombinant QSOX1 (rQSOX1-S), and mAb 56-3 was generated against a peptide (NEQEQPLGQWHLS) from the long isoform of QSOX1 (QSOX1-L).

View Article and Find Full Text PDF

Galectin-1 is a β-galactoside-binding lectin that has been implicated as a suppressive molecule in cancer and autoimmune diseases. Gal-1 has known immunomodulatory activity and was found to be expressed on regulatory T cells, leading to the potential for targeted immunotherapies. Anti-Gal-1 monoclonal antibodies were generated in this study using classical hybridoma techniques.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) suppress adaptive immunity and inflammation. Although they play a role in suppressing anti-tumor responses, development of therapeutics that target Tregs is limited by their low abundance, heterogeneity, and lack of specific cell surface markers. We isolated human PBMC-derived CD4 CD25 Foxp3 Tregs and demonstrate they suppress stimulated CD4 PBMCs in a cell contact-dependent manner.

View Article and Find Full Text PDF

SETD2, a histone H3 lysine trimethyltransferase, is frequently inactivated and associated with recurrence of clear cell renal cell carcinoma (ccRCC). However, the impact of SETD2 loss on metabolic alterations in ccRCC is still unclear. In this study, SETD2 null isogenic 38E/38F clones derived from 786-O cells were generated by zinc finger nucleases, and subsequent metabolic, genomic, and cellular phenotypic changes were analyzed by targeted metabolomics, RNA sequencing, and biological methods, respectively.

View Article and Find Full Text PDF

Coccidioides spp. fungi, which are present in soil in the southwestern United States, can become airborne when the soil is disrupted, and humans who inhale the spores can become infected. In 2012, our institution in Maricopa County, Arizona, USA, began a building project requiring extensive excavation of soil.

View Article and Find Full Text PDF

The trapping or immobilization of individual cells at specific locations in microfluidic platforms is essential for single cell studies, especially those requiring cell stimulation and downstream analysis of cellular content. Selectivity for individual cell types is required when mixtures of cells are analyzed in heterogeneous and complex matrices, such as the selection of metastatic cells within blood samples. Here, we demonstrate a microfluidic device based on direct current (DC) insulator-based dielectrophoresis (iDEP) for selective trapping of single MCF-7 breast cancer cells from mixtures with both mammalian peripheral blood mononuclear cells (PBMC) as well MDA-MB-231 as a second breast cancer cell type.

View Article and Find Full Text PDF

Blood circulates through nearly every organ including tumors. Therefore, plasma is a logical source to search for tumor-derived proteins and peptides. The challenge with plasma is that it is a complex bodily fluid composed of high concentrations of normal host proteins that obscure identification of tumor-derived molecules.

View Article and Find Full Text PDF

Peptides bound to cell surface MHC class I molecules allow the immune system to recognize intracellular pathogens and tumor-derived peptides. Our goal was to learn what the immune system "sees" on the surfaces of tumor cells by acid-eluting peptides from HLA molecules for extended time periods. We determined how long peptides would continue to elute over time from a pancreatic tumor cell line, Panc-1, and a breast cancer cell line, MCF-7, at pH 3.

View Article and Find Full Text PDF

Previous studies have shown that dendritic cells (DC) pulsed with T27K, an antigenic preparation derived from spherules (of Coccidioides posadasii), activate peripheral blood mononuclear cells (PBMC) from nonimmune subjects as well as from patients with disseminated coccidioidomycosis. In this study, we have assessed the interaction between human DC and C. posadasii spherules in order to better understand the initial response between Coccidioides and the human host.

View Article and Find Full Text PDF

Vaccination with hybrids comprising fused dendritic cells (DCs) and tumor cells is a novel cancer immunotherapy approach designed to combine tumor antigenicity with the antigen-presenting and immune-stimulatory capacities of DCs. For clinical purposes, we have incorporated a large-scale process for the generation of clinical-grade DCs together with novel electrofusion technology. The electrofusion system provides for ease and standardization of method, efficient DC-tumor cell hybrid formation, and large-quantity production of hybrids in a high-volume (6-ml) electrofusion chamber.

View Article and Find Full Text PDF