We have developed methods for isolating proteoglycans and glycosaminoglycans from archaeological bones and teeth. These methods have been previously published (Coulson- Thomas , 2015 ) and are described here in more detail. In the case of glycosaminoglycans, the method was a previously described method ( Nader , 1999 ) which we optimized for archeological samples.
View Article and Find Full Text PDFWe have developed a 3D co-culture system composed of fibroblasts and colorectal cancer cells that enables us to study the desmoplastic reaction. This method also enables us to study the influence of the desmoplastic reaction on the migration of colorectal cancer cells through the surrounding stroma. This protocol has been previously published (Coulson- Thomas , 2011 ) and is described here in more detail.
View Article and Find Full Text PDFPurpose: Heparan sulfate (HS) is a highly modified glycosaminoglycan (GAG) bound to a core protein to form heparan sulfate proteoglycans (HSPGs) that are vital in many cellular processes ranging from development to adult physiology, as well as in disease, through interactions with various protein ligands. This study aimed to elucidate the role of HS in corneal epithelial homeostasis and wound healing.
Methods: An inducible quadruple transgenic mouse model was generated to excise Ext1 and Ndst1, which encode the critical HS chain elongation enzyme and N-deacetylase/N-sulfotransferase, respectively, in keratin 14-positive cells upon doxycycline induction.
The stroma surrounding tumors can either restrict or promote tumor growth and progression, and both the cellular and non-cellular components of the stroma play an active role. The cellular components in the surrounding stroma include tumor-associated fibroblasts, host tissue cells and immune cells. The non-cellular components, which form the extracellular matrix (ECM) scaffold, include proteoglycans, collagen, proteinases, growth factors and cytokines.
View Article and Find Full Text PDF