The aim of the present study was to prepare surfactant-free pseudolatexes of various methacrylic acid copolymers. These aqueous colloidal dispersions of polymeric materials for oral administration are intended for film coating of solid dosage forms or for direct manufacturing of nanoparticles. Nanoparticulate dispersions were produced by an emulsification-diffusion method involving the use of partially water-miscible solvents and the mutual saturation of the aqueous and organic phases prior to the emulsification in order to reduce the initial thermodynamic instability of the emulsion.
View Article and Find Full Text PDFParticle size should be optimized to achieve targeted and extended drug delivery to the affected tissues. We describe here the effects of the mean particle size on the pharmacokinetics and photothrombic activity of meso-tetra(carboxyphenyl)porphyrin (TCPP), which is encapsulated into biodegradable nanoparticles based on poly(d,l-lactic acid). Four batches of nanoparticles with different mean sizes ranging from 121 to 343 nm, were prepared using the emulsification-diffusion technique.
View Article and Find Full Text PDFHydrophobic porphyrins are potentially interesting molecules for the photodynamic therapy (PDT) of solid cancers or ocular vascularization diseases. Their pharmaceutical development is, however, hampered by their lipophilicity, which renders formulation difficult especially when intravenous administration is needed. Encapsulation of a lipophilic derivative of porphyrin, the meso-tetra(p-hydroxyphenyl)porphyrin (p-THPP), into polymeric biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles proved to enhance its photodynamic activity against mammary tumour cells when compared to free drug.
View Article and Find Full Text PDF