The vagina is innervated by a complex arrangement of sensory, sympathetic, and parasympathetic nerve fibers that contain classical transmitters plus an array of neuropeptides and enzymes known to regulate diverse processes including blood flow and nociception. The neurochemical characteristics and distributions of peptide-containing nerves in the mouse vagina are unknown. This study used multiple labeling immunohistochemistry, confocal maging and analysis to investigate the presence and colocalization of the peptides vasoactive intestinal polypeptide (VIP), calcitonin-gene related peptide (CGRP), substance P (SP), neuropeptide tyrosine (NPY), and the nitric oxide synthesizing enzyme neuronal nitric oxide synthase (nNOS) in nerve fibers of the murine vaginal wall.
View Article and Find Full Text PDFGlucuronidation of carboxylic-acid-containing drugs can yield reactive acyl (ester-linked) glucuronide metabolites that are able to modify endogenous macromolecules. Previous research has shown that several carboxylic acid drugs are genotoxic in isolated mouse hepatocytes, and that DNA damage is prevented by the glucuronidation inhibitor, borneol. Whether these species induce comparable genetic damage in human cells is unknown.
View Article and Find Full Text PDFNonenzymatic modification of proteins by acyl glucuronides is well documented; however, little is known about their potential to damage DNA. We have previously reported that clofibric acid undergoes glucuronidation-dependent bioactivation to DNA-damaging species in cultured mouse hepatocytes. The aim of this study was to investigate the mechanisms underlying such DNA damage, and to screen chemically diverse carboxylic acid drugs for their DNA-damaging potential in glucuronidation proficient murine hepatocytes.
View Article and Find Full Text PDF