Publications by authors named "Yvette Bohraus"

Blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) of cortical layers relies on the hemodynamic response and is biased toward large veins on the cortical surface. Functional changes in the cerebral metabolic rate of oxygen (ΔCMRO) may reflect neural cortical function better than BOLD fMRI, but it is unknown whether the calibrated BOLD model for functional CMRO measurement remains valid at high resolution. Here, we measure laminar ΔCMRO elicited by visual stimulation in macaque primary visual cortex (V1) and find that ΔCMRO peaks in the middle of the cortex, in agreement with autoradiographic measures of metabolism.

View Article and Find Full Text PDF

As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution.

View Article and Find Full Text PDF

Mice are widely used to investigate atherogenesis, which is known to be influenced by stresses related to blood flow. However, numerical characterization of the haemodynamic environment in the commonly studied aortic arch has hitherto been based on idealizations of inflow into the aorta. Our purpose in this work was to numerically characterize the haemodynamic environment in the mouse aortic arch using measured inflow velocities, and to relate the resulting shear stress patterns to known locations of high- and low-lesion prevalence.

View Article and Find Full Text PDF

The aim of this study is to develop and validate a patient-specific distributed model of the systemic arterial tree. This model is built using geometric and hemodynamic data measured on a specific person and validated with noninvasive measurements of flow and pressure on the same person, providing thus a patient-specific model and validation. The systemic arterial tree geometry was obtained from MR angiographic measurements.

View Article and Find Full Text PDF