This study demonstrates, for the first time, the ability of surface-enhanced Raman chemical imaging (SER-CI) combined with multivariate analysis to detect low levels (0.1% (w/w)) of a polymorphic form in a pharmaceutical mixture. In the studied formulation, piroxicam was used as a model molecule to develop this approach.
View Article and Find Full Text PDFSurface-enhanced Raman chemical imaging (SER-CI) is a highly sensitive analytical tool recently used in the pharmaceutical field owing to the possibility to obtain high sensitivity along with spatial information. However, the covering method of the pharmaceutical samples such as tablets with metallic nanoparticles is a major issue for SER-CI analyses due to the difficulty to obtain a homogeneous covering of tablet surface with the SERS substrates. In this context, a spray-coating method was proposed in order to fully exploit the potential of SER-CI.
View Article and Find Full Text PDFRaman chemical imaging provides both spectral and spatial information on a pharmaceutical drug product. Even if the main objective of chemical imaging is to obtain distribution maps of each formulation compound, identification of pure signals in a mixture dataset remains of huge interest. In this work, an iterative approach is proposed to identify the compounds in a pharmaceutical drug product, assuming that the chemical composition of the product is not known by the analyst and that a low dose compound can be present in the studied medicine.
View Article and Find Full Text PDFRaman chemical imaging provides chemical and spatial information about pharmaceutical drug product. By using resolution methods on acquired spectra, the objective is to calculate pure spectra and distribution maps of image compounds. With multivariate curve resolution-alternating least squares, constraints are used to improve the performance of the resolution and to decrease the ambiguity linked to the final solution.
View Article and Find Full Text PDFDuring drug product development, the nature and distribution of the active substance have to be controlled to ensure the correct activity and the safety of the final medication. Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), due to its structural and spatial specificities, provides an excellent way to analyze these two critical parameters in the same acquisition. The aim of this work is to demonstrate that MALDI-MSI, coupled with four well known multivariate statistical analysis algorithms (PCA, ICA, MCR-ALS and NMF), is a powerful technique to extract spatial and spectral information about chemical compounds from known or unknown solid drug product formulations.
View Article and Find Full Text PDFIn this work, Raman hyperspectral images and multivariate curve resolution-alternating least squares (MCR-ALS) are used to study the distribution of actives and excipients within a pharmaceutical drug product. This article is mainly focused on the distribution of a low dose constituent. Different approaches are compared, using initially filtered or non-filtered data, or using a column-wise augmented dataset before starting the MCR-ALS iterative process including appended information on the low dose component.
View Article and Find Full Text PDFIndependent component analysis (ICA) was used as a blind source separation method on a Raman image of a pharmaceutical tablet. Calculations were performed without a priori knowledge concerning the formulation. The aim was to extract the pure signals from the initial data set in order to examine the distribution of actives and major excipients within the tablet.
View Article and Find Full Text PDFA near infrared (NIR) method was developed for determination of tablet potency of active pharmaceutical ingredient (API) in a complex coated tablet matrix. The calibration set contained samples from laboratory and production scale batches. The reference values were obtained by high performance liquid chromatography (HPLC) and partial least squares (PLS) regression was used to establish a model.
View Article and Find Full Text PDFMolecules containing a dithiolane moiety are widely investigated due to their antioxidant properties. The archetypal representative of this class of compounds is lipoic acid and indeed the lipoic acid-dihydrolipoic acid couple is part of the antioxidant defence system of the cell. In the course of a program aiming to find improved antioxidants effective in vivo, we designed, synthesised and pharmacologically investigated new lipoic acid analogs.
View Article and Find Full Text PDF