Ultrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the RbMnCo[Fe(CN)] material, designed to exhibit a 75 K wide thermal hysteresis around room temperature between MnFe tetragonal and MnFe cubic phases.
View Article and Find Full Text PDFFollowing Phase 2 of the upgrade of the ESRF in which the storage ring was replaced by a new low-emittance ring along with many other facility upgrades, the status of ID22, the high-resolution powder-diffraction beamline, is described. The beamline has an in-vacuum undulator as source providing X-rays in the range 6-75 keV. ID22's principle characteristics include very high angular resolution as a result of the highly collimated and monochromatic beam, coupled with a 13-channel Si 111 multi-analyser stage between the sample and a Dectris Eiger2 X 2M-W CdTe pixel detector.
View Article and Find Full Text PDFNanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging.
View Article and Find Full Text PDFThe electric-field-induced and temperature induced dynamics of domains, defects, and phases play an important role in determining the macroscopic functional response of ferroelectric and piezoelectric materials. However, distinguishing and quantifying these phenomena remains a persistent challenge that inhibits our understanding of the fundamental structure-property relationships. In situ dark field x-ray microscopy is a new experimental technique for the real space mapping of lattice strain and orientation in bulk materials.
View Article and Find Full Text PDFReacting CsO, TiTe, TiO, and Te under inert conditions gives powders of CsTiTeO (x ≈ 0.2). Small single crystals of the same phase were obtained from a CsCl salt melt in closed ampoules.
View Article and Find Full Text PDFIce formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions.
View Article and Find Full Text PDFThe novel host-guest compound [Cs6Cl][Fe24Se26] (I4/mmm; a=11.0991(9), c=22.143(2) Å) was obtained by reacting Cs2Se,CsCl, Fe, and Se in closed ampoules.
View Article and Find Full Text PDFThrough a solid-state reaction, a practically phase pure powder of Ba3 V2 S4 O3 was obtained. The crystal structure was confirmed by X-ray single-crystal and synchrotron X-ray powder diffraction (P63 , a=10.1620(2), c=5.
View Article and Find Full Text PDFAntibodies and prorenin mutants have long been used to structurally characterize prorenin, the inactive proenzyme form of renin. They were designed on the basis of homology models built using other aspartyl protease proenzyme structures since no structure was available for prorenin. Here, we present the first X-ray structure of a prorenin.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
May 2010
Different polymorphs of rasburicase, a recombinant urate oxidase enzyme (Uox) from Aspergillus flavus, were obtained as a series of polycrystalline precipitates. Different crystallization protocols were followed in which the salt type, pH and polyethylene glycol 8000 (PEG 8000) concentration were varied. The related crystalline phases were characterized by means of high-resolution synchrotron X-ray powder diffraction.
View Article and Find Full Text PDF