Publications by authors named "Yves Peeraer"

The structure of the Mg(2+)-dependent enzyme human phosphoserine phosphatase (HPSP) was exploited to examine the structural and functional role of the divalent cation in the active site of phosphatases. Most interesting is the biochemical observation that a Ca(2+) ion inhibits the activity of HPSP, even in the presence of added Mg(2+). The sixfold coordinated Mg(2+) ion present in the active site of HPSP under normal physiological conditions, was replaced by a Ca(2+) ion by using a crystallization condition with high concentration of CaCl(2) (0.

View Article and Find Full Text PDF

Fructan 1-exohydrolase IIa (1-FEH IIa), a plant enzyme involved in fructan breakdown, has been crystallized using the hanging-drop vapour-diffusion method at 277 K. The crystals are tetragonal, belonging to space group P4(1)2(1)2 or P4(3)2(1)2, with unit-cell parameters a = 139.83, b = 139.

View Article and Find Full Text PDF

We report the identification of the mutations in the only known case of L-3-phosphoserine phosphatase deficiency, a recessively inherited condition. The two mutations correspond to the replacement of the semiconserved Asp32 residue by an asparagine and of the extremely conserved Met52 by a threonine. The effects of both mutations were studied on the human recombinant enzyme, expressed in Escherichia coli.

View Article and Find Full Text PDF

The crystal structure of human phosphoserine phosphatase (HPSP) in the open conformation has been determined at a resolution of 1.53 A. The crystals are orthorhombic, belonging to space group C222(1), with unit-cell parameters a = 49.

View Article and Find Full Text PDF

Phosphoserine phosphatase (PSP), a human enzyme involved in the L-serine biosynthesis pathway, has been crystallized using the hanging-drop vapour-diffusion method at 277 K. The crystals are orthorhombic, belonging to space group C222(1), with unit-cell parameters a = 49.03 A, b = 130.

View Article and Find Full Text PDF