Cancer Chemother Pharmacol
January 2025
The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified.
View Article and Find Full Text PDFMavacamten, the first drug in the class of β-cardiac myosin modulator, is used for the treatment of patients with hypertrophic cardiomyopathy. This orally administered drug demonstrates wide interpatient variability in pharmacokinetics parameters, due in part to variant CYP2C19 alleles. Individuals who are CYP2C19 poor metabolizers have increased exposure and are at increased risk of reduced cardiac hypercontractility.
View Article and Find Full Text PDFBr J Clin Pharmacol
January 2024
Aims: Azathioprine (AZA) and 6-mercaptopurine are prescribed in acute lymphoblastic leukaemia (ALL) and inflammatory bowel diseases (IBD). Metabolism to active 6-thioguanine (6TGN) and 6-methylmercaptopurine nucleotides (6MMPN) is variable but therapeutic drug monitoring (TDM) remains debatable. This study reports on factors impacting on red blood cell (RBC) metabolites concentrations in children to facilitate TDM interpretation.
View Article and Find Full Text PDFThiopurine drugs azathioprine (AZA) and 6-mercaptopurine (6-MP) are used extensively in pediatric and adult patients with inflammatory and neoplastic diseases. They are metabolized to 6-thioguanine nucleotides (6-TGN) or to 6-methyl-mercaptopurine nucleotides (6-MMPN). The balance between 6-TGN and 6-MMPN is highly variable and monitoring is recommended, but its benefit in outcome gives rise to conflicting results, potentially increased by differences in quantifying 6-MP metabolism.
View Article and Find Full Text PDFGrowth and maturation changes are mainly responsible for differences in drug pharmacokinetics and pharmacodynamics observed between adults and children, especially neonates. Ontogeny of drug-metabolizing enzymes and transporters plays an important role in drugs interindividual pharmacokinetic variability but data are limited in both term and preterm neonates. This study aimed to characterize mRNA expression of the main drug-metabolizing enzymes and transport proteins involved in drug disposition, using umbilical cord blood (UCB), according to gender, gestational age, and genetic background.
View Article and Find Full Text PDFAims: 6-mercaptopurine (6-MP) is used in the treatment of childhood acute lymphoblastic leukaemia (ALL). Its red blood cell (RBC) metabolite concentrations (6-thioguanine [6-TGN] and 6-methylmercaptopurine nucleotides [6-MMPN]) are related to drug response. We investigated the impact of non-genetic covariates and pharmacogenetic polymorphisms affecting thiopurine methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) on 6-MP metabolism and response.
View Article and Find Full Text PDFBackground: Patent ductus arteriosus (PDA) in extremely preterm infants remains a challenging condition with conflicting treatment strategies. Ibuprofen is currently used to treat PDA with ductal closure failure rate up to 40%. We test the hypothesis that cytochrome P450 CYP2C8/2C9 polymorphisms may predict ibuprofen response.
View Article and Find Full Text PDF6-mercaptopurine, a key drug for the treatment of acute lymphoblastic leukaemia in children, is a prodrug metabolized into 6-thioguanine (6-TGN) which are the active compounds and into methylated metabolites, primary by thiopurine S-methyltransferase enzyme (TPMT). This enzyme displays important inter subject variability linked to a genetic polymorphism: when treated with standard doses of thiopurine, TPMT-deficient and heterozygous patients are at great risk for developing severe and potentially life-threatening toxicity (hematopoietic, hepatic, mucositis..
View Article and Find Full Text PDF6-mercaptopurine, a key drug for the treatment of acute lymphoblastic leukaemia in children, is a prodrug metabolized into 6-thioguanine (6-TGN) which are the active compounds and into methylated metabolites, primary by thiopurine S-methyltransferase enzyme (TPMT). This enzyme displays important inter subject variability linked to a genetic polymorphism: when treated with standard doses of thiopurine, TPMT-deficient and heterozygous patients are at great risk for developing severe and potentially life-threatening toxicity (hematopoietic, hepatic, mucositis. .
View Article and Find Full Text PDFDrug Metab Pharmacokinet
April 2010
Metabolising enzymes and transport proteins are largely expressed in human tissues. They have major impact on drug disposition and effects. We studied mRNA expression of phase I and II metabolising enzymes and transporters in fetal tissues at different development stages.
View Article and Find Full Text PDFBackground And Aims: Crohn's disease (CD) is a chronic and invalidating inflammatory bowel disease of unknown etiology. The coordinated action of the cytochrome metabolizing subfamily CYP3A and the transport protein P-glycoprotein (P-gp) in the enterocyte results in a reduced bioavailability of drugs administered orally. Cytokines modulate the expression and functionality of CYP3A and P-gp.
View Article and Find Full Text PDFCytochromes P450 3A (CYP3A) and P-glycoprotein (P-gp) are mainly located in enterocytes and hepatocytes. The CYP3A/P-gp system contributes to the first-pass metabolism of many drugs, resulting in a limited bioavailability. During the neonatal period, a shift between CYP3A7, the fetal form, and CYP3A4 occurs in the liver, but data on the expression of the CYP3A/P-gp complex in the intestine are very limited.
View Article and Find Full Text PDFObjective: Thiopurine drugs are commonly used in pediatric patients for the treatment of acute leukemia, organ transplantation and inflammatory diseases. They are catabolized by the cytosolic thiopurine methyltransferase (TPMT), which is subject to a genetic polymorphism. In children, enzyme activities are immature at birth and developmental patterns vary widely from one enzyme to another.
View Article and Find Full Text PDF