Publications by authors named "Yves J M Bollen"

Single-molecule imaging in living cells can provide unique information about biological processes. Bacteria offer some particular challenges for single-molecule imaging due to their small size, only slightly larger than the diffraction limit of visible light. Here, we describe how reliable and reproducible single-molecule data can be obtained for a transmembrane protein in the Gram-negative bacterium Escherichia coli by using live-cell fluorescence microscopy.

View Article and Find Full Text PDF

The functional organization of prokaryotic cell membranes, which is essential for many cellular processes, has been challenging to analyze due to the small size and nonflat geometry of bacterial cells. Here, we use single-molecule fluorescence microscopy and three-dimensional quantitative analyses in live Escherichia coli to demonstrate that its cytoplasmic membrane contains microdomains with distinct physical properties. We show that the stability of these microdomains depends on the integrity of the MreB cytoskeletal network underneath the membrane.

View Article and Find Full Text PDF

The cytoplasmic membrane forms the barrier between any cell's interior and the outside world. It contains many proteins that enable essential processes such as the transmission of signals, the uptake of nutrients, and cell division. In the case of prokaryotes, which do not contain intracellular membranes, the cytoplasmic membrane also contains proteins for respiration and protein folding.

View Article and Find Full Text PDF

Cells need to adapt to dynamic environments. Yeast that fail to cope with dynamic changes in the abundance of glucose can undergo growth arrest. We show that this failure is caused by imbalanced reactions in glycolysis, the essential pathway in energy metabolism in most organisms.

View Article and Find Full Text PDF

Numerous proteins require cofactors to be active. Computer simulations suggest that cooperative interaction networks achieve optimal cofactor binding. There is a need for the experimental identification of the residues crucial for stabilizing these networks and thus for cofactor binding.

View Article and Find Full Text PDF

Redox enzyme maturation proteins (REMPs) bind pre-proteins destined for translocation across the bacterial cytoplasmic membrane via the twin-arginine translocation system and enable the enzymatic incorporation of complex cofactors. Most REMPs recognize one specific pre-protein. The recognition site usually resides in the N-terminal signal sequence.

View Article and Find Full Text PDF

Lateral diffusion of proteins in the plane of a biological membrane is important for many vital processes, including energy conversion, signaling, chemotaxis, cell division, protein insertion, and secretion. In bacteria, all these functions are located in a single membrane. Therefore, quantitative measurements of protein diffusion in bacterial membranes can provide insight into many important processes.

View Article and Find Full Text PDF

Background: Truncated forms and full-length forms of the amyloid-beta 40 (Abeta40) are key molecules in the pathogenesis of dementia, and are detectable in CSF. Reliable methods to detect these biomarkers in CSF are of great importance for understanding the disease mechanisms and for diagnostic purposes.

Methods: VU-alpha-Abeta40, a monoclonal antibody (mAb) specifically detecting Abeta40, was generated and characterized by solid and fluid phase ELISA, surface plasmon resonance spectroscopy (SPRS), immunoprecipitation (IP), immunohistochemical and Western blot (WB) analysis.

View Article and Find Full Text PDF

Many native proteins occasionally form partially unfolded forms (PUFs), which can be detected by hydrogen/deuterium exchange and NMR spectroscopy. Knowledge about these metastable states is required to better understand the onset of folding-related diseases. So far, not much is known about where PUFs reside within the energy landscape for protein folding.

View Article and Find Full Text PDF

The twin arginine transport (Tat) system translocates folded proteins across the bacterial inner membrane. Transport substrates are recognized by means of evolutionarily well-conserved N-terminal signal peptides. The precise role of signal peptides in the actual transport process is not yet fully understood.

View Article and Find Full Text PDF

The topology of a native protein influences the rate with which it is formed, but does topology affect the appearance of folding intermediates and their specific role in kinetic folding as well? This question is addressed by comparing the folding data recently obtained on apoflavodoxin from Azotobacter vinelandii with those available on all three other alpha-beta parallel proteins the kinetic folding mechanism of which has been studied, i.e. Anabaena apoflavodoxin, Fusarium solani pisi cutinase and CheY.

View Article and Find Full Text PDF

Although many proteins require the binding of a ligand to be functional, the role of ligand binding during folding is scarcely investigated. Here, we have reported the influence of the flavin mononucleotide (FMN) cofactor on the global stability and folding kinetics of Azotobacter vinelandii holoflavodoxin. Earlier studies have revealed that A.

View Article and Find Full Text PDF

The folding kinetics of the 179-residue Azotobacter vinelandii apoflavodoxin, which has an alpha-beta parallel topology, have been followed by stopped-flow experiments monitored by fluorescence intensity and anisotropy. Single-jump and interrupted refolding experiments show that the refolding kinetics involve four processes yielding native molecules. Interrupted unfolding experiments show that the two slowest folding processes are due to Xaa-Pro peptide bond isomerization in unfolded apoflavodoxin.

View Article and Find Full Text PDF