Nucleic Acids Res
February 2023
During each cell division, tens of thousands of DNA replication origins are co-ordinately activated to ensure the complete duplication of the human genome. However, replication fork progression can be challenged by many factors, including co-directional and head-on transcription-replication conflicts (TRC). Head-on TRCs are more dangerous for genome integrity.
View Article and Find Full Text PDFThe mitochondrial genomes of strains contain up to 13 introns. An intronless recombinant genome introduced into the nuclear background of strain W303 gave the CW252 strain, which is used to model mitochondrial respiratory pathologies. The complete sequence of this mitochondrial genome was obtained using a hybrid assembling methodology.
View Article and Find Full Text PDFDespite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide.
View Article and Find Full Text PDFBackground: Detection of large genomic rearrangements, such as large indels, duplications or translocations is now commonly achieved by next generation sequencing (NGS) approaches. Recently, several tools have been developed to analyze NGS data but the resulting files are difficult to interpret without an additional visualization step. Circos (Genome Res, 19:1639-1645, 2009), a Perl script, is a powerful visualization software that requires setting up numerous configuration files with a large number of parameters to handle.
View Article and Find Full Text PDFThe Replicon Theory proposed 50 years ago has proven to apply for replicons of the three domains of life. Here, we review our knowledge of genome organization into single and multiple replicons in bacteria, archaea and eukarya. Bacterial and archaeal replicator/initiator systems are quite specific and efficient, whereas eukaryotic replicons show degenerate specificity and efficiency, allowing for complex regulation of origin firing time.
View Article and Find Full Text PDFIn this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.
View Article and Find Full Text PDFIn higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.
View Article and Find Full Text PDFThe Nrd1-Nab3-Sen1 (NNS) complex pathway is responsible for transcription termination of cryptic unstable transcripts and sn/snoRNAs. The NNS complex recognizes short motifs on the nascent RNA, but the presence of these sequences alone is not sufficient to define a functional terminator. We generated a homogeneous set of several hundreds of artificial, NNS-dependent terminators with an in vivo selection approach.
View Article and Find Full Text PDFThe pairwise comparison of RNA secondary structures is a fundamental problem, with direct application in mining databases for annotating putative noncoding RNA candidates in newly sequenced genomes. An increasing number of software tools are available for comparing RNA secondary structures, based on different models (such as ordered trees or forests, arc annotated sequences, and multilevel trees) and computational principles (edit distance, alignment). We describe here the website BRASERO that offers tools for evaluating such software tools on real and synthetic datasets.
View Article and Find Full Text PDFIn higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew.
View Article and Find Full Text PDFGenome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.
View Article and Find Full Text PDFDuring evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews.
View Article and Find Full Text PDFIt is now well established that there were four Hox gene clusters in the genome of the last common ancestor of extant gnathostomes. To better understand the evolution of the organization and expression of these genomic regions, we have studied the Hox gene clusters of a shark (Scyliorhinus canicula). We sequenced 225,580 expressed sequence tags from several embryonic cDNA libraries.
View Article and Find Full Text PDFNeutral nucleotide substitutions occur at varying rates along genomes, and it remains a major issue to unravel the mechanisms that cause these variations and to analyze their evolutionary consequences. Here, we study the role of replication in the neutral substitution pattern. We obtained a high-resolution replication timing profile of the whole human genome by massively parallel sequencing of nascent BrdU-labeled replicating DNA.
View Article and Find Full Text PDFNumerous studies of chromatin structure showed that nucleosome free regions (NFRs) located at 5' gene ends contribute to transcription initiation regulation. Here, we determine the role of intragenic chromatin structure on gene expression regulation. We show that, along Saccharomyces cerevisiae genes, nucleosomes are highly organized following two types of architecture that depend only on the distance between the NFRs located at the 5' and 3' gene ends.
View Article and Find Full Text PDFFor years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo.
View Article and Find Full Text PDFThe forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis, patterning and regionalization in the developing forebrain.
View Article and Find Full Text PDFPervasive and hidden transcription is widespread in eukaryotes, but its global level, the mechanisms from which it originates and its functional significance are unclear. Cryptic unstable transcripts (CUTs) were recently described as a principal class of RNA polymerase II transcripts in Saccharomyces cerevisiae. These transcripts are targeted for degradation immediately after synthesis by the action of the Nrd1-exosome-TRAMP complexes.
View Article and Find Full Text PDFLong non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles.
View Article and Find Full Text PDFNucleosome positioning plays an essential role in cellular processes by modulating accessibility of DNA to proteins. Here, using only sequence-dependent DNA flexibility and intrinsic curvature, we predict the nucleosome occupancy along the genomes of Saccharomyces cerevisiae and Drosophila melanogaster and demonstrate the predictive power and universality of our model through its correlation with experimentally determined nucleosome occupancy data. In yeast promoter regions, the computed average nucleosome occupancy closely superimposes with experimental data, exhibiting a <200 bp region unfavourable for nucleosome formation bordered by regions that facilitate nucleosome formation.
View Article and Find Full Text PDFINTRODUCTIONDue to their large size and long generation times, chondrichthyans have been largely ignored by geneticists. However, their key phylogenetic position makes them ideal subjects to study the molecular bases of the important morphological and physiological innovations that characterize jawed vertebrates. Such analyses are crucial to understanding the origin of the complex genetic mechanisms unraveled in osteichthyans.
View Article and Find Full Text PDFIn this work, we investigated a large-scale organization of the human genes with respect to putative replication origins. We developed an appropriate multiscale method to analyze the nucleotide compositional skew along the genome and found that in more than one-quarter of the genome, the skew profile presents characteristic patterns consisting of successions of N-shaped structures, designated here N-domains, bordered by putative replication origins. Our analysis of recent experimental timing data confirmed that, in a number of cases, domain borders coincide with replication initiation zones active in the early S phase, whereas the central regions replicate in the late S phase.
View Article and Find Full Text PDFMessenger RNAs that do not contain a long open reading frame (ORF) or non-protein-coding RNAs (npcRNAs) are an emerging novel class of transcripts. Their functions may involve the RNA molecule itself and/or short ORF-encoded peptides. npcRNA genes are difficult to identify using standard gene prediction programs that rely on the presence of relatively long ORFs.
View Article and Find Full Text PDF