Publications by authors named "Yves Clement"

Background: Restorative regeneration, the capacity to reform a lost body part following amputation or injury, is an important and still poorly understood process in animals. Annelids, or segmented worms, show amazing regenerative capabilities, and as such are a crucial group to investigate. Elucidating the molecular mechanisms that underpin regeneration in this major group remains a key goal.

View Article and Find Full Text PDF

RNA polymerase III (RNAPIII) synthesizes essential and abundant noncoding RNAs such as transfer RNAs. Controlling RNAPIII span of activity by accurate and efficient termination is a challenging necessity to ensure robust gene expression and to prevent conflicts with other DNA-associated machineries. The mechanism of RNAPIII termination is believed to be simpler than that of other eukaryotic RNA polymerases, solely relying on the recognition of a T-tract in the nontemplate strand.

View Article and Find Full Text PDF

The spatiotemporal expression of genes is controlled by enhancer sequences that bind transcription factors. Identifying the target genes of enhancers remains difficult because enhancers regulate gene expression over long genomic distances. To address this, we used an evolutionary approach to build two genome-wide maps of predicted enhancer-gene associations in the human and zebrafish genomes.

View Article and Find Full Text PDF

mRNA translation and decay appear often intimately linked although the rules of this interplay are poorly understood. In this study, we combined our recent P-body transcriptome with transcriptomes obtained following silencing of broadly acting mRNA decay and repression factors, and with available CLIP and related data. This revealed the central role of GC content in mRNA fate, in terms of P-body localization, mRNA translation and mRNA stability: P-bodies contain mostly AU-rich mRNAs, which have a particular codon usage associated with a low protein yield; AU-rich and GC-rich transcripts tend to follow distinct decay pathways; and the targets of sequence-specific RBPs and miRNAs are also biased in terms of GC content.

View Article and Find Full Text PDF

Base composition is highly variable among and within plant genomes, especially at third codon positions, ranging from GC-poor and homogeneous species to GC-rich and highly heterogeneous ones (particularly Monocots). Consequently, synonymous codon usage is biased in most species, even when base composition is relatively homogeneous. The causes of these variations are still under debate, with three main forces being possibly involved: mutational bias, selection and GC-biased gene conversion (gBGC).

View Article and Find Full Text PDF

In grasses such as rice or maize, the distribution of genic GC content is well known to be bimodal. It is mainly driven by GC content at third codon positions (GC3 for short). This feature is thought to be specific to grasses as closely related species like banana have a unimodal GC3 distribution.

View Article and Find Full Text PDF

In angiosperms (as in other species), GC content varies along and between genes, within a genome, and between genomes of different species, but the reason for this distribution is still an open question. Grass genomes are particularly intriguing because they exhibit a strong bimodal distribution of genic GC content and a sharp 5'-3' decreasing GC content gradient along most genes. Here, we propose a unifying model to explain the main patterns of GC content variation at the gene and genome scale.

View Article and Find Full Text PDF

Meiotic recombination is known to influence GC-content evolution in large regions of mammalian genomes by favoring the fixation of G and C alleles and increasing the rate of A/T to G/C substitutions. This process is known as GC-biased gene conversion (gBGC). Until recently, genome-wide measures of fine-scale recombination activity were unavailable in mice.

View Article and Find Full Text PDF

There are large-scale variations of the GC-content along mammalian chromosomes that have been called isochore structures. Primates and rodents have different isochore structures, which suggests that these lineages exhibit different modes of GC-content evolution. It has been shown that, in the human lineage, GC-biased gene conversion (gBGC), a neutral process associated with meiotic recombination, acts on GC-content evolution by influencing A or T to G or C substitution rates.

View Article and Find Full Text PDF

Gene duplication has different outcomes: pseudogenization (death of one of the two copies), gene amplification (both copies remain the same), sub-functionalization (both copies are required to perform the ancestral function) and neo-functionalization (one copy acquires a new function). Asymmetric evolution (one copy evolves faster than the other) is usually seen as a signature of neo-functionalization. However, it has been proposed that sub-functionalization could also generate asymmetric evolution among duplicate genes when they experience different local recombination rates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionk655p740shn6cra7ps2tqp7v0anvmtm2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once