Publications by authors named "Yves Charton"

Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate.

View Article and Find Full Text PDF

Background And Purpose: Small molecule glucokinase activators (GKAs) have been associated with potent antidiabetic efficacy and hepatic steatosis in rodents. This study reports the discovery of S 50131 and S 51434, two novel GKAs with an original scaffold and an atypical pharmacological profile.

Experimental Approach: Activity of the compounds was assessed in vitro by measuring activation of recombinant glucokinase, stimulation of glycogen synthesis in rat hepatocytes and increased insulin secretion from rat pancreatic islets of Langerhans.

View Article and Find Full Text PDF

Novel nicotinic ligands, characterized by the presence of an amino substituted cyclopropane ring connected to a pyridine nucleus, are described. Pharmacological investigation revealed that these compounds exhibit highest affinity for the rat alpha4beta2 subtype of the nicotinic receptor with no affinity for the muscarinic receptor. No appreciable affinity for the muscular or for the ganglionic nicotinic receptor was observed at concentrations up to 10 microM.

View Article and Find Full Text PDF

Molecules containing a dithiolane moiety are widely investigated due to their antioxidant properties. The archetypal representative of this class of compounds is lipoic acid and indeed the lipoic acid-dihydrolipoic acid couple is part of the antioxidant defence system of the cell. In the course of a program aiming to find improved antioxidants effective in vivo, we designed, synthesised and pharmacologically investigated new lipoic acid analogs.

View Article and Find Full Text PDF