Publications by authors named "Yves Boubenec"

Grouping sets of sounds into relevant categories is an important cognitive ability that enables the association of stimuli with appropriate goal-directed behavioral responses. In perceptual tasks, the primary auditory cortex (A1) assumes a prominent role by concurrently encoding both sound sensory features and task-related variables. Here, we sought to explore the role of A1 in the initiation of sound categorization, shedding light on its involvement in this cognitive process.

View Article and Find Full Text PDF

Brains can gracefully weed out irrelevant stimuli to guide behavior. This feat is believed to rely on a progressive selection of task-relevant stimuli across the cortical hierarchy, but the specific across-area interactions enabling stimulus selection are still unclear. Here, we propose that population gating, occurring within primary auditory cortex (A1) but controlled by top-down inputs from prelimbic region of medial prefrontal cortex (mPFC), can support across-area stimulus selection.

View Article and Find Full Text PDF

Everyday life's perceptual decision-making is informed by experience. In particular, temporal expectation can ease the detection of relevant events in noisy sensory streams. Here, we investigated if humans can extract hidden temporal cues from the occurrences of probabilistic targets and utilize them to inform target detection in a complex acoustic stream.

View Article and Find Full Text PDF

Little is known about how neural representations of natural sounds differ across species. For example, speech and music play a unique role in human hearing, yet it is unclear how auditory representations of speech and music differ between humans and other animals. Using functional ultrasound imaging, we measured responses in ferrets to a set of natural and spectrotemporally matched synthetic sounds previously tested in humans.

View Article and Find Full Text PDF

Natural soundscapes correspond to the acoustical patterns produced by biological and geophysical sound sources at different spatial and temporal scales for a given habitat. This pilot study aims to characterize the temporal-modulation information available to humans when perceiving variations in soundscapes within and across natural habitats. This is addressed by processing soundscapes from a previous study [Krause, Gage, and Joo.

View Article and Find Full Text PDF

Rats use their whiskers to extract sensory information from their environment. While exploring, they analyze peripheral stimuli distributed over several whiskers. Previous studies have reported cross-whisker integration of information at several levels of the neuronal pathways from whisker follicles to the somatosensory cortex.

View Article and Find Full Text PDF

Performance on cognitive tasks during learning is used to measure knowledge, yet it remains controversial since such testing is susceptible to contextual factors. To what extent does performance during learning depend on the testing context, rather than underlying knowledge? We trained mice, rats and ferrets on a range of tasks to examine how testing context impacts the acquisition of knowledge versus its expression. We interleaved reinforced trials with probe trials in which we omitted reinforcement.

View Article and Find Full Text PDF

Primary sensory cortices are classically considered to extract and represent stimulus features, while association and higher-order areas are thought to carry information about stimulus meaning. Here we show that this information can in fact be found in the neuronal population code of the primary auditory cortex (A1). A1 activity was recorded in awake ferrets while they either passively listened or actively discriminated stimuli in a range of Go/No-Go paradigms, with different sounds and reinforcements.

View Article and Find Full Text PDF

A major challenge in neuroscience is to longitudinally monitor whole brain activity across multiple spatial scales in the same animal. Functional UltraSound (fUS) is an emerging technology that offers images of cerebral blood volume over large brain portions. Here we show for the first time its capability to resolve the functional organization of sensory systems at multiple scales in awake animals, both small structures by precisely mapping and differentiating sensory responses, and structures by elucidating the connectivity scheme of top-down projections.

View Article and Find Full Text PDF

Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics.

View Article and Find Full Text PDF

Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling.

View Article and Find Full Text PDF

Rodents use their whiskers to locate nearby objects with an extreme precision. To perform such tasks, they need to detect whisker/object contacts with a high temporal accuracy. This contact detection is conveyed by classes of mechanoreceptors whose neural activity is sensitive to either slow or fast time varying mechanical stresses acting at the base of the whiskers.

View Article and Find Full Text PDF

Many natural sounds have spectrotemporal signatures only on a statistical level, e.g. wind, fire or rain.

View Article and Find Full Text PDF

Whisking rodents can discriminate finely textured objects using their vibrissae. The biomechanical and neural processes underlying such sensory tasks remain elusive. Here we combine the use of model micropatterned substrates and high-resolution videography of rats' whiskers during tactile exploration to study how texture information is mechanically encoded in the whisker motion.

View Article and Find Full Text PDF

Rats use their whiskers to extract a wealth of information about their immediate environment, such as the shape, position or texture of an object. The information is conveyed to mechanoreceptors located within the whisker follicle in the form of a sequence of whisker deflections induced by the whisker/object contact interaction. How the whiskers filter and shape the mechanical information and effectively participate in the coding of tactile features remains an open question to date.

View Article and Find Full Text PDF