This work examines the impact of local losses produced by a resistive wiremesh on the modes of an acoustic cavity. In the one-dimensional case, we demonstrate the ability to selectively affect the modes, ranging from being completely unaffected by the wiremesh to being fully absorbed by it. This effect can be used to filter the cavity modes.
View Article and Find Full Text PDFA method for filtering higher-order acoustic modes using a resistive layer is proposed and applied to a two-dimensional rectangular waveguide with a quiescent fluid. An analogue of Cremer's criterion is discussed and used to obtain the optimal modal attenuation of the non-planar waves while the plane wave is preserved. Numerical validation of the concept is performed for a straight waveguide and an abrupt expansion in a waveguide.
View Article and Find Full Text PDFThe absorption of airborne sound is still a subject of active research, and even more since the emergence of acoustic metamaterials. Although being subwavelength, the screen barriers developed so far cannot absorb more than 50% of an incident wave at very low frequencies (<100 Hz). Here, we explore the design of a subwavelength and broadband absorbing screen based on thermoacoustic energy conversion.
View Article and Find Full Text PDFThis work investigates anomalous transmission effects in periodic dissipative media, which is identified as an acoustic analogue of the Borrmann effect. For this, the scattering of acoustic waves on a set of equidistant resistive sheets is considered. It is shown both theoretically and experimentally that at the Bragg frequency of the system, the transmission coefficient is significantly higher than at other frequencies.
View Article and Find Full Text PDFThis work considers the propagation of sound in a waveguide with an impedance wall. In the low frequency regime, the first effect of the impedance is to decrease the propagation speed of acoustic waves. Therefore, a flow in the duct can exceed the wave propagation speed at low Mach numbers, making it effectively supersonic.
View Article and Find Full Text PDFThis work presents a study of scattering phenomena in shear flows and its application to impedance walls. These flows are described by a dimensionless shear layer thickness and a mean Mach number. Both transmission through a given shear layer and reflection on an acoustic treatment are studied.
View Article and Find Full Text PDFThe acoustic effects of in-parallel resonators is compared to the behavior of a classical single degree of freedom resonator for which the resistance and the mass are in series. In-parallel resonators serve to enhance the acoustic absorption for mid-frequencies thereby extending the active frequency range of perfect acoustic absorbers. Two implementations of these in-parallel absorbers are presented and investigated experimentally as well as numerically.
View Article and Find Full Text PDFAcoustic cloaking for the suppression of backscattering inside ducts is proposed in the audible range where plane waves are curved around the object using the surface modes of the liner. It is numerically shown that a slowly varying resonant liner (e.g.
View Article and Find Full Text PDFFor acoustic waves in lined ducts, at given frequencies, the dispersion relation leads to a transcendental equation for the wavenumber that has to be solved by numerical methods. Based on an Eckart explicit expression initially derived for water waves, accurate explicit approximations are proposed for the wavenumber of the fundamental mode in lined ducts. While the Eckart expression is 5% accurate, some improved approximations can reach maximum relative errors of less than 10.
View Article and Find Full Text PDFWith flow, the acoustic effect of a locally reacting lined wall cannot be described by a single quantity independent of the incident wave, such as a wall impedance. At least two quantities, intrinsic to the liner and to the flow, are required to describe the effect of the lined wall regardless of the incident wave. In addition to the impedance, the unsteady tangential force exerted by the wall on the flow has to be taken into account.
View Article and Find Full Text PDFA metamaterial composed of a set of periodic rigid resonant inclusions embedded in a porous lining is investigated to enhance the sound attenuation in an acoustic duct at low frequencies. A transmission loss peak is observed on the measurements and corresponds to the crossing of the lower two Bloch modes of an infinite periodic material. Numerical parametric studies show that the optimum modal attenuation can be achieved at the exceptional point in the parameter plane of inclusion position and frequency, where the two lower modes merge.
View Article and Find Full Text PDFJ Acoust Soc Am
October 2017
The scattering of sound by a membrane-covered cavity in a duct with shear flow is calculated with a linear model based on the multimodal method. The model is verified by comparison against the previous experiments focused on sound suppression of a stable system with high-tension membranes and a low-speed flow. It is shown in this paper that such a situation is drastically changed when the flow velocity is larger than the in vacuo flexural wave speed of the membrane.
View Article and Find Full Text PDFWe show theoretically and experimentally that the propagation of an acoustic wave in an airflow duct going through a pair of diaphragms, with equivalent amounts of mean-flow-induced effective gain and loss, displays all the features of a parity-time (PT) symmetric system. Using a scattering matrix formalism, we observe, experimentally, the properties which reflect the PT symmetry of the scattering acoustical system: the existence of spontaneous symmetry breaking with symmetry-broken pairs of scattering eigenstates showing amplification and reduction, and the existence of points with unidirectional invisibility.
View Article and Find Full Text PDFThe effect of a shear flow on an acoustic liner consisting of a perforated plate backed by cavities is studied. Two different approaches are investigated: First, the duct and the liner are considered as a periodic system while in the second approach the liner is considered as homogeneous and described by an impedance. Those two approaches coincide perfectly without flow for a small hole spacing compared to the acoustic wavelength.
View Article and Find Full Text PDFA thin subwavelength material that can be flush mounted in a duct and that gives an attenuation band at low frequencies in air flow channels is presented. To decrease the material thickness, the sound is slowed in the material using folded side branch tubes. The impedance of the material is compared to the optimal value given by the Cremer condition, which can differ greatly from the air characteristic impedance.
View Article and Find Full Text PDFJ Acoust Soc Am
February 2016
The resonance scattering theory is used to study the sound propagation in a waveguide with a portion of its wall lined by a locally reacting material. The objective is to understand the effects of the mode coupling in the lined portion on the transmission. It is shown that a zero in the transmission is present when a real resonance frequency of the open system, i.
View Article and Find Full Text PDFThe acoustic propagation in lined flow duct with purely reactive impedance at the wall is considered. This reacting liner has the capability to reduce the speed of sound, and thus to enhance the interaction between the acoustic propagation and the low Mach number flow ( M≃0.3).
View Article and Find Full Text PDFThis paper experimentally investigates the acoustic behavior of a homogeneous porous material with a rigid frame (metallic foam) under grazing flow. The transmission coefficient shows an unusual oscillation over a particular range of frequencies which reports the presence of an unstable hydrodynamic wave that can exchange energy with the acoustic waves. This coupling of acoustic and hydrodynamic waves becomes larger when the Mach number increases.
View Article and Find Full Text PDFThis work investigates the acoustical properties of a multilayer porous material in which periodic inclusions are embedded. The material is assumed to be backed by a rigid wall. Most of the studies performed in this field used the multipole method and are limited to circular shape inclusions.
View Article and Find Full Text PDFAn experimental investigation of the parameters controlling the whistling frequency and amplitude of an orifice in a confined turbulent flow is undertaken. A circular single hole orifice with sharp edges, a hole diameter equal to 0.015 m and a thickness equal to 0.
View Article and Find Full Text PDFThis paper deals with experimental investigation of the lined wall boundary condition in flow duct applications such as aircraft engine systems or automobile mufflers. A first experiment, based on a microphone array located in the liner test section, is carried out in order to extract the axial wavenumbers with the help of an "high-accurate" singular value decomposition Prony-like algorithm. The experimental axial wavenumbers are then used to provide the lined wall impedance for both downstream and upstream acoustic propagation by means of a straightforward impedance education method involving the classical Ingard-Myers boundary condition.
View Article and Find Full Text PDFAn efficient method is proposed for modeling time harmonic acoustic propagation in a nonuniform lined duct without flow. The lining impedance is axially segmented uniform, but varies circumferentially. The sound pressure is expanded in term of rigid duct modes and an additional function that carries the information about the impedance boundary.
View Article and Find Full Text PDFIn lined ducts, incident modes are scattered by axially and circumferentially nonuniform impedance. Experiments and numerical calculations have proved that this mode scattering can reduce the liner performance in some cases. This paper is devoted to the characterization of the penalty mode scattering excited by hard-walled splices which often exist in lined ducts.
View Article and Find Full Text PDFIt is demonstrated that the differentially heated stack, the heart of all thermoacoustic devices, provides a source of streaming additional to those associated with Reynolds stresses in quasi-unidirectional gas flow. This source of streaming is related to temperature-induced asymmetry in the generation of vortices and turbulence near the stack ends. The asymmetry of the hydrodynamic effects in an otherwise geometrically symmetric stack is due to the temperature difference between stack ends.
View Article and Find Full Text PDF