Publications by authors named "Yves Acremann"

Progress towards analysing transitions between steady states demands improvements in time-resolved imaging, both for fundamental research and for applications in information technology. Transmission electron microscopy is a powerful technique for investigating the atomic structure, chemical composition and electromagnetic properties of materials with high spatial resolution and precision. However, the extraction of information about dynamic processes in the ps time regime is often not possible without extensive modification to the instrument while requiring careful control of the operation conditions to not compromise the beam quality.

View Article and Find Full Text PDF

Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemission spectroscopy, allowing parallel measurements of the electron spectral function simultaneously in energy, two momentum components and additional physical parameters with single-event detection capability. Efficient processing of the photoelectron event streams at a rate of up to tens of megabytes per second will enable rapid band mapping for materials characterization.

View Article and Find Full Text PDF

Time-resolved soft-x-ray photoemission spectroscopy is used to simultaneously measure the ultrafast dynamics of core-level spectral functions and excited states upon excitation of excitons in WSe_{2}. We present a many-body approximation for the Green's function, which excellently describes the transient core-hole spectral function. The relative dynamics of excited-state signal and core levels clearly show a delayed core-hole renormalization due to screening by excited quasifree carriers resulting from an excitonic Mott transition.

View Article and Find Full Text PDF

The laser-driven ultrafast demagnetization effect is one of the long-standing problems in solid-state physics. The time scale is given not only by the transfer of energy, but also by the transport of angular momentum away from the spin system. Through a double-pulse experiment resembling two-dimensional spectroscopy, we separate the different pathways by their nonlinear properties.

View Article and Find Full Text PDF
Article Synopsis
  • Current-induced spin-orbit torques effectively manipulate magnetization in spintronic devices, which are promising for fast, non-volatile memory and logic applications.
  • Researchers directly observed the dynamics of magnetization in Pt/Co/AlO dots during current pulses, using time-resolved X-ray imaging to achieve 25 nm spatial and 100 ps temporal resolution.
  • The study reveals that magnetization switching occurs rapidly due to deterministic nucleation of inverted domains and propagation of domain walls, with reproducible switching for over 10 cycles influenced by the combined effects of spin-orbit torques and Dzyaloshinskii-Moriya interaction.
View Article and Find Full Text PDF

We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm(2). Employing resonant spatially muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm(2).

View Article and Find Full Text PDF

We report small angle x-ray scattering data demonstrating the direct experimental microscopic observation of the small-to-large crossover behavior of hydrophobic effects in hydrophobic solvation. By increasing the side chain length of amphiphilic tetraalkyl-ammonium (C(n)H(2n+1))(4)N(+) (R(4)N(+)) cations in aqueous solution we observe diffraction peaks indicating association between cations at a solute size between 4.4 and 5 Å, which show temperature dependence dominated by hydrophobic attraction.

View Article and Find Full Text PDF

We demonstrate in the soft x-ray regime a novel technique for high-resolution lensless imaging based on differential holographic encoding. We have achieved superior resolution over x-ray Fourier transform holography while maintaining the signal-to-noise ratio and algorithmic simplicity. We obtain a resolution of 16 nm by synthesizing images in the Fourier domain from a single diffraction pattern, which allows resolution improvement beyond the reference fabrication limit.

View Article and Find Full Text PDF