The spatial-temporal distribution pattern of St. Lawrence Estuary (SLE) beluga is examined with a passive acoustic monitoring network of 13 stations from June 2018 to October 2021. A beluga calling index, correlated with beluga density, is used as a proxy for habitat use by the population at weekly, monthly, and yearly scales.
View Article and Find Full Text PDFPassive acoustics provides a powerful tool for monitoring the endangered North Atlantic right whale (Eubalaena glacialis), but robust detection algorithms are needed to handle diverse and variable acoustic conditions and differences in recording techniques and equipment. This paper investigates the potential of deep neural networks (DNNs) for addressing this need. ResNet, an architecture commonly used for image recognition, was trained to recognize the time-frequency representation of the characteristic North Atlantic right whale upcall.
View Article and Find Full Text PDFPassive acoustics is used to monitor the threatened St. Lawrence estuary beluga between 2007 and 2017 from a site downstream of the beluga summer habitat. Acoustic metrics of presence and occurrence based on beluga acoustic band activity (BABA) are extracted by a dedicated algorithm adapted for the shipping noise from the St.
View Article and Find Full Text PDFCanadian Arctic and Subarctic regions experience a rapid decrease of sea ice accompanied with increasing shipping traffic. The resulting time-space changes in shipping noise are studied for four key regions of this pristine environment, for 2013 traffic conditions and a hypothetical tenfold traffic increase. A probabilistic modeling and mapping framework, called Ramdam, which integrates the intrinsic variability and uncertainties of shipping noise and its effects on marine habitats, is developed and applied.
View Article and Find Full Text PDFAn ensemble of 255 spectral source levels (SSLs) of merchant ships were measured with an opportunistic seaway acoustic observatory adhering to the American National Standards Institute/Acoustical Society of America S12.64-2009 standard as much as possible, and deployed in the 350-m deep lower St. Lawrence Seaway in eastern Canada.
View Article and Find Full Text PDFWild beluga whistle source levels (SLs) are estimated from 52 three-dimensional (3D) localized calls using a 4-hydrophone array. The probability distribution functions of the root-mean-square (rms) SL in the time domain, and the peak, the strongest 3-dB, and 10-dB SLs from the spectrogram, were non-Gaussian. The average rms SL was 143.
View Article and Find Full Text PDFA setup for measuring spectral source levels (SSLs) of ships transiting along a seaway, the traffic density and shipping noise, is presented. The results feed shipping-noise modeling that reproduces the actual in situ observations to map shipping-noise variability over space and time for investigating its effects on aquatic organisms. The ship's SSL databank allows sorting the different contributors to total shipping noise for assisting in exploring mitigation approaches (e.
View Article and Find Full Text PDFA 13-month time series of Arctic Ocean noise from the marginal ice zone of the Eastern Beaufort Sea is analyzed to detect under-ice acoustic transients isolated from ambient noise with a dedicated algorithm. Noise transients due to ice cracking, fracturing, shearing, and ridging are sorted out into three categories: broadband impulses, frequency modulated (FM) tones, and high-frequency broadband noise. Their temporal and acoustic characteristics over the 8-month ice covered period, from November 2005 to mid-June 2006, are presented and their generation mechanisms are discussed.
View Article and Find Full Text PDFMapping vessel noise is emerging as one method of identifying areas where sound exposure due to shipping noise could have negative impacts on aquatic ecosystems. The probability distribution function (pdf) of sound exposure levels (SEL) is an important metric for identifying areas of concern. In this paper a probabilistic shipping SEL modeling method is described to obtain the pdf of SEL using the sonar equation and statistical relations linking the pdfs of ship traffic density, source levels, and transmission losses to their products and sums.
View Article and Find Full Text PDFThis paper analyzes an 8-month time series (November 2005 to June 2006) of underwater noise recorded at the mouth of the Amundsen Gulf in the marginal ice zone of the western Canadian Arctic when the area was >90% ice covered. The time-series of the ambient noise component was computed using an algorithm that filtered out transient acoustic events from 7-min hourly recordings of total ocean noise over a [0-4.1] kHz frequency band.
View Article and Find Full Text PDFA continuous car ferry line crossing the Saguenay Fjord mouth and traffic from the local whale-watching fleet introduce high levels of shipping noise in the heart of the Saguenay-St. Lawrence Marine Park. To characterize this noise and examine its potential impact on belugas, a 4-hydrophone array was deployed in the area and continuously recorded for five weeks in May-June 2009.
View Article and Find Full Text PDFWe consider predation as a function of prey concentration with a focus on how this interaction is influenced by biological-physical interactions, and wider oceanographic processes. In particular, we examine how the anti-predation behaviour of Northern krill interacts with ocean-circulation process to influence its vulnerability to predation. We describe how three-dimensional (3D) circulation interacts with in situ light levels to modulate predator-prey interactions from small to large scales, and illustrate how the stability of the predator-prey system is sometimes perturbed as a consequence.
View Article and Find Full Text PDFMonitoring blue and fin whales summering in the St. Lawrence Estuary with passive acoustics requires call recognition algorithms that can cope with the heavy shipping noise of the St. Lawrence Seaway and with multipath propagation characteristics that generate overlapping copies of the calls.
View Article and Find Full Text PDFThe performance of large-aperture hydrophone arrays to detect and localize blue and fin whales' 15-85 Hz signature vocalizations under ocean noise conditions was assessed through simulations from a normal mode propagation model combined to noise statistics from 15 960 h of recordings in Saguenay-St. Lawrence Marine Park. The probability density functions of 2482 summer noise level estimates in the call bands were used to attach a probability of detection/masking to the simulated call levels as a function of whale depth and range for typical environmental conditions.
View Article and Find Full Text PDF