Publications by authors named "Yvan Moenne-Loccoz"

Tourism in Paleolithic caves can cause an imbalance in cave microbiota and lead to cave wall alterations, such as dark zones. However, the mechanisms driving dark zone formation remain unclear. Using shotgun metagenomics in Lascaux Cave's Apse and Passage across two years, we tested metabarcoding-derived functional hypotheses regarding microbial diversity and metabolic potential in dark zones vs unmarked surfaces nearby.

View Article and Find Full Text PDF

Background: Since the 1980s, soils in a 22-km area near Lake Neuchâtel in Switzerland have been recognized for their innate ability to suppress the black root rot plant disease caused by the fungal pathogen Thielaviopsis basicola. However, the efficacy of natural disease suppressive soils against insect pests has not been studied.

Results: We demonstrate that natural soil suppressiveness also protects plants from the leaf-feeding pest insect Oulema melanopus.

View Article and Find Full Text PDF

Community assembly processes are complex and understanding them represents a challenge in microbial ecology. Here, we used Lascaux Cave as a stable, confined environment to quantify the importance of stochastic vs deterministic processes during microbial community dynamics across the three domains of life in relation to an anthropogenic disturbance that had resulted in the side-by-side occurrence of a resistant community (unstained limestone), an impacted community (present in black stains), and a resilient community (attenuated stains). Metabarcoding data showed that the microbial communities of attenuated stains, black stains, and unstained surfaces differed, with attenuated stains being in an intermediate position.

View Article and Find Full Text PDF

species are cosmopolitan soil phytopathogens from the division , which produce mycotoxins and cause significant economic losses of crop plants. However, soils suppressive to diseases are known to occur, and recent knowledge on microbial diversity in these soils has shed new lights on phytoprotection effects. In this review, we synthesize current knowledge on soils suppressive to diseases and the role of their rhizosphere microbiota in phytoprotection.

View Article and Find Full Text PDF

Plant evolutionary history has had profound effects on belowground traits, which is likely to have impacted the ability to interact with microorganisms, but consequences on root colonization and gene expression by plant growth-promoting rhizobacteria (PGPR) remain poorly understood. Here, we tested the hypothesis that wheat genomic content and domestication are key factors determining the capacity for PGPR interaction. Thus, 331 wheat representatives from eight Triticum or Aegilops species were inoculated under standardized conditions with the generalist PGPR Pseudomonas ogarae F113, using an autofluorescent reporter system for monitoring F113 colonization and expression of phl genes coding for the auxinic inducing signal 2,4-diacetylphloroglucinol.

View Article and Find Full Text PDF

Crop varieties differ in their ability to interact with Plant Growth-Promoting Rhizobacteria (PGPR), but the genetic basis for these differences is unknown. This issue was addressed with the PGPR Sp245, using 187 wheat accessions. We screened the accessions based on the seedling colonization by the PGPR and the expression of the phenylpyruvate decarboxylase gene (for synthesis of the auxin indole-3-acetic acid), using fusions.

View Article and Find Full Text PDF

Pseudomonas strains IT-194P, IT-215P, IT-P366 and IT-P374 were isolated from the rhizospheres of wheat grown in soils sampled from different fields (some of them known to be disease-suppressive) located near Mionica, Serbia. Phylogenetic analysis of the 16S rRNA genes and of whole genome sequences showed that these strains belong to two potentially new species, one containing strains IT-P366 and IT-194P and clustering (whole genome analysis) next to P. umsongensis DSM16611, and another species containing strains IT-P374 and IT-215P and clustering next to P.

View Article and Find Full Text PDF

Background: Cave anthropization related to rock art tourism can lead to cave microbiota imbalance and microbial alterations threatening Paleolithic artwork, but the underpinning microbial changes are poorly understood. Caves can be microbiologically heterogeneous and certain rock wall alterations may develop in different rooms despite probable spatial heterogeneity of the cave microbiome, suggesting that a same surface alteration might involve a subset of cosmopolitan taxa widespread in each cave room. We tested this hypothesis in Lascaux, by comparing recent alterations (dark zones) and nearby unmarked surfaces in nine locations within the cave.

View Article and Find Full Text PDF

Lascaux Cave is a UNESCO site that was closed to the public following wall surface alterations. Most black stains that had formed on wall surface are stable or receding, but a new type of alteration visually quite different (termed dark zones) developed in Lascaux's Apse room in the last 15 years. Here, we tested the hypothesis that dark zones displayed a different microbial community than black stains previously documented in the same room, using metabarcoding (MiSeq sequencing).

View Article and Find Full Text PDF

Strong anthropization of karstic caves may result in formation of various wall alterations including dark zones, whose microbial community differs from that of non-altered surfaces nearby. Dark zones grow quickly and without gradual visual changes, leading to the hypothesis of a simple process rather than complex microbial successions, but this is counter-intuitive as underground microbial changes are typically slow and dark zones are microbiologically very distinct from unmarked surfaces. We tested this hypothesis in Paleolithic Lascaux Cave, across two years of microscale sampling.

View Article and Find Full Text PDF

Wheat has undergone a complex evolutionary history, which led to allopolyploidization and the hexaploid bread wheat Triticum aestivum. However, the significance of wheat genomic architecture for beneficial plant-microbe interactions is poorly understood, especially from a functional standpoint. In this study, we tested the hypothesis that wheat genomic architecture was an overriding factor determining root recruitment of microorganisms with particular plant-beneficial traits.

View Article and Find Full Text PDF

Anthropization of Palaeolithic caves open for tourism may favour collembola invasion and result in the formation of black stains attributed to pigmented fungi. However, ecological processes underpinning black stain formation are not fully understood. Here, we tested the hypotheses that black stains from the Apse room of Lascaux Cave display a specific microbiota enriched in pigmented fungi, and that collembola thriving on the stains have the potential to consume and disseminate these black fungi.

View Article and Find Full Text PDF

Actinobacteria are important cave inhabitants, but knowledge of how anthropization and anthropization-related visual marks affect this community on cave walls is lacking. We compared Actinobacteria communities among four French limestone caves (Mouflon, Reille, Rouffignac, and Lascaux) ranging from pristine to anthropized, and within Lascaux Cave between marked (wall visual marks) and unmarked areas in different rooms (Sas-1, Passage, Apse, and Diaclase). In addition to the 16S rRNA gene marker, 441 bp fragments of the hsp65 gene were used and an hsp65-related taxonomic database was constructed for the identification of Actinobacteria to the species level by Illumina-MiSeq analysis.

View Article and Find Full Text PDF

The impact of inoculated plant growth-promoting rhizobacteria (PGPR) on its host physiology and nutrition depends on inoculum level. Whether the impact of the inoculated PGPR on the indigenous rhizosphere microbiota also varies with the PGPR inoculum level is unclear. Here, we tested this issue using the PGPR CRT1-maize model system, where the initial seed inoculation is known to enhance maize growth and germination, and impacts the maize rhizomicrobiota, including microbial functional groups modulating plant growth.

View Article and Find Full Text PDF

The beneficial effects of plant growth-promoting Rhizobacteria (PGPR) entail several interaction mechanisms with the plant or with other root-associated microorganisms. These microbial functions are carried out by multiple taxa within functional groups and contribute to rhizosphere functioning. It is likely that the inoculation of additional PGPR cells will modify the ecology of these functional groups.

View Article and Find Full Text PDF

Wheat, one of the major crops in the world, has had a complex history that includes genomic hybridizations between and species and several domestication events, which resulted in various wild and domesticated species (especially and ), many of them still existing today. The large body of information available on wheat-microbe interactions, however, was mostly obtained without considering the importance of wheat evolutionary history and its consequences for wheat microbial ecology. This review addresses our current understanding of the microbiome of wheat root and rhizosphere in light of the information available on pre- and post-domestication wheat history, including differences between wild and domesticated wheats, ancient and modern types of cultivars as well as individual cultivars within a given wheat species.

View Article and Find Full Text PDF

Microorganisms colonize caves extensively, and in caves open for tourism they may cause alterations on wall surfaces. This is a major concern in caves displaying Paleolithic art, which is usually fragile and may be irremediably damaged by microbial alterations. Therefore, many caves were closed for preservation purposes, e.

View Article and Find Full Text PDF

The plant microbiota may differ depending on soil type, but these microbiota probably share the same functions necessary for holobiont fitness. Thus, we tested the hypothesis that phytostimulatory microbial functional groups are likely to co-occur in the rhizosphere, using groups corresponding to nitrogen fixation (nifH) and 1-aminocyclopropane-1-carboxylate deamination (acdS), i.e.

View Article and Find Full Text PDF

Control of common scab disease can be reached by resistant cultivars or suppressive soils. Both mechanisms are likely to translate into particular potato microbiome profiles, but the relative importance of each is not known. Here, microbiomes of bulk and tuberosphere soil and of potato periderm were studied in one resistant and one susceptible cultivar grown in a conducive and a suppressive field.

View Article and Find Full Text PDF

Plant interactions with plant growth-promoting rhizobacteria (PGPR) are highly dependent on plant genotype. Modern plant breeding has largely sought to improve crop performance but with little focus on the optimization of plant × PGPR interactions. The interactions of the model PGPR strain Pseudomonas kilonensis F113 were therefore compared in 199 ancient and modern wheat genotypes.

View Article and Find Full Text PDF

Limestone areas across the world develop karstic caves, which are populated by a wide range of macro- and microorganisms. Many of these caves display Paleolithic art or outstanding speleothems, and in the last century they have been subjected to anthropization due to touristic management and intense human frequentation. Despite their cultural importance and associated conservation issues, the impact of anthropization on cave biodiversity is not known.

View Article and Find Full Text PDF

Bacteria of the Pseudomonas putida group are studied for a large panel of properties ranging from plant growth promotion and bioremediation to pathogenicity. To date, most of the classification of individual pseudomonads from this group relies on 16S RNA gene analysis, which is insufficient for accurate taxonomic characterization within bacterial species complexes of the Pseudomonas putida group. Here, a collection of 20 of these bacteria, isolated from various soils, was assessed via multi-locus sequence analysis of rpoD, gyrB and rrs genes.

View Article and Find Full Text PDF

We report here the draft genome of Bacillus altitudinis strain PAE4, a thermophilic plant growth-promoting rhizobacterium isolated from the coastal ridge of the Mediterranean Sea in Egypt. Besides heat shock protein genes, several genes encoding phytobeneficial properties were identified.

View Article and Find Full Text PDF

Background: The World-famous UNESCO heritage from the Paleolithic human society, Lascaux Cave (France), has endeavored intense microclimatic perturbations, in part due to high touristic pressure. These perturbations have resulted in numerous disturbances of the cave ecosystem, including on its microbial compartment, which resulted in the formation of black stains especially on the rock faces of the passage. We investigated the cave microbiome in this part of Lascaux by sampling three mineral substrates (soil, banks, and inclined planes) on and outside stains to assess current cave microbial assemblage and explore the possibility that pigmented microorganisms involved in stain development occur as microbial consortia.

View Article and Find Full Text PDF

Background: Complex plant-microbe interactions have been established throughout evolutionary time, many of them with beneficial effects on the host in terms of plant growth, nutrition, or health. Some of the corresponding modes of action involve a modulation of plant hormonal balance, such as the deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). Despite its ecological importance, our understanding of ACC deamination is impaired by a lack of direct molecular tools.

View Article and Find Full Text PDF